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A carefully curated appetizer to stimulate your appetite for comprehensive tabular data
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Tabular prediction

* Tabular prediction: problem definition
e A quick glance at the current SOTA tabular system: AutoGluon

* Improving AutoGluon with offline evaluations and portfolio (meta- learning



Tabular prediction

import pandas as pd
from autogluon.tabular import TabularPredictor

df_train = pd.read_csv('train.csv')
df_test = pd.read_csv('train.csv')

predictor = TabularPredictor( ='class').fit(df_train)

predictions = predictor.predict(df_test)
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Tabular prediction
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 AutoGluon

How does this work?

best model by a large margin
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Hyperparameter Optimization (HPO)

Strikingly, AutoGluon achieved state-of-the-art results without HPO with its mix of
bagging, stacking, ensembling and good heuristic featurizers

It is not that HPO does not help, it does but compute is better spent evaluating a
good set of default models (with more folds, more rounds, etc)

AutoGluon default models: 13 default hyperparameters chosen manually by
experts

Can we do better by automating this?
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e 2) improve over the manual selection of AutoGluon default models

Precomputed evaluations and results on:
200 datasets from regression, classification, multi-class (thanks OpenML &)

« 200 random configurations of models used in AutoGluon (CatBoost, MLP, LightGBM,
RandomForest, ...) on all datasets with 3 seeds

Performance metrics (latency, accuracy, ...) and predictions available for every dataset, model, seed

~100GB of data, ~200K CPU hours of compute
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. Storing predictions and target labels allows to {’# The dataset combined with portfolio learning
obtain the performance of any ensemble on the fly! allows to outperform Autogluon!
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Tuning hyperparameters helps a lot but it is
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Ji = argmin. i el 2 Eiji J, = argmln
N

=1

Benefits (&

» Approximation guarantees from the
original (sub-modular) problem

 Tractable

» Works extremely well in practice

Disadvantage “: needs a grid or a
surrogate
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[ Pick the model performing best on average J [

Pick the model performing best on average when
combined with the ones previously selected
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method win-rate  loss reduc.
AG + Portfolio (ours) 0%
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LightGBM 98% 23.6%




Results

 Just fitting portfolio configuration on evaluations
of TabRepo outperforms all SOTA AutoML
methods studied

* We can analyse the performance of various  :..
components: #ensemble, #configurations,
#datasets C

* Portfolio configurations has replaced the
manually configured defaults and improved
significantly AutoGluon

S it —e— Portfolio
205 t 1Y Portfolio (ens.)
e e e [ e e e e H L e T e

#configurations per family

#training datasets

#portfolio configurations

#ensemble members

Figure 4: Impact on normalized error when varying the (a) number of configurations per family, (b)
number of training datasets, (c) portfolio size and (d) number of ensemble members.

CatBoost (tuned + ens)
Autosklearn

Autosklearn2
Flaml

w
o w

w

o

~

m| 200

1h

4h
Fitting budget (time)

3,\'
24h

3501
3001

o
8 2501

Lightautoml m  AutoGluon best
H2oautoml *  Portfolio
n n n
w 1 w
1h 4h 24h

Fitting budget (time)

Table 2: Performance of AutoGluon com-
bined with portfolios on AMLB.

method

win-rate

loss reduc.

AG + Portfolio (ours)

AG

MLJAR
lightautoml
GAMA
FLAML
autosklearn
H20AutoML
CatBoost

TunedRandomForest
RandomForest

XGBoost
LightGBM

81%
83%
86%
87%
89%
92%
94%
94%
97%
98%
98%

0%
2.8%
22.5%
11.7%
15.5%
16.3%
11.8%
10.3%
18.1%
22.9%
25.0%
20.9%
23.6%




Results



Results

« 2 All those experiments (fitting portfolio and evaluating) can be done using TabRepo for
a very small cost (e.g. many table lookups)



Results

« 2 All those experiments (fitting portfolio and evaluating) can be done using TabRepo for
a very small cost (e.g. many table lookups)

e Possible research ideas:



Results

« 2 All those experiments (fitting portfolio and evaluating) can be done using TabRepo for
a very small cost (e.g. many table lookups)

e Possible research ideas:

* Find best tabular configurations given time budget



Results

« E2 All those experiments (fitting portfolio and evaluating) can be done using TabRepo for
a very small cost (e.g. many table lookups)

* Possible research ideas:
* Find best tabular configurations given time budget

* Apply different meta-heuristics to optimise the learned default portfolio list of
configurations on a new dataset



Results

« E2 All those experiments (fitting portfolio and evaluating) can be done using TabRepo for
a very small cost (e.g. many table lookups)

* Possible research ideas:
* Find best tabular configurations given time budget

* Apply different meta-heuristics to optimise the learned default portfolio list of
configurations on a new dataset

* Multiobjective optimization taking latency into account...



Results

« E2 All those experiments (fitting portfolio and evaluating) can be done using TabRepo for
a very small cost (e.g. many table lookups)

* Possible research ideas:
* Find best tabular configurations given time budget

* Apply different meta-heuristics to optimise the learned default portfolio list of
configurations on a new dataset

* Multiobjective optimization taking latency into account...

* All those experiments can be done... with your laptop!!



Results

« E2 All those experiments (fitting portfolio and evaluating) can be done using TabRepo for
a very small cost (e.g. many table lookups)

* Possible research ideas:
* Find best tabular configurations given time budget

* Apply different meta-heuristics to optimise the learned default portfolio list of
configurations on a new dataset

* Multiobjective optimization taking latency into account...

* All those experiments can be done... with your laptop!!

« ;. https://github.com/autogluon/tabrepo



Results

« E2 All those experiments (fitting portfolio and evaluating) can be done using TabRepo for
a very small cost (e.g. many table lookups)

* Possible research ideas:
* Find best tabular configurations given time budget

* Apply different meta-heuristics to optimise the learned default portfolio list of
configurations on a new dataset

* Multiobjective optimization taking latency into account...

* All those experiments can be done... with your laptop!!
« ;. https://github.com/autogluon/tabrepo

* Quick demo
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Limitations

Easy to rerun paper analysis but hard to compare your own method

Large collections of datasets (216) but mostly grabbed everything we could

No good control on quality, duplication, domain

Only TabPFN-v1 as In Context Learning (ICL) method



Any questions?

Paper: https://arxiv.org/pdf/2311.02971
Code: https://github.com/autogluon/tabrepo

0]
Al

David Salinas Nick Erickson


https://arxiv.org/pdf/2311.02971
https://github.com/autogluon/tabrepo

Part Il

TabArena: A Living Benchmark for Machine Learning on Tabular Data



Motivation 1: Unreliable Baselines

How to become SOTA on the highly used benchmark by McElfresh et al. (2023):

Model Avg. Rank  Avg. norm. logloss  Avg. logloss
XGBoost 5.56 0.1 0.39
CatBoost 5.84 0.12 0.45
LightGBM 6.85 0.17 0.45
ResNet 8.12 0.22 0.49
SAINT 8.77 0.23 0.52
MLP 10.79 0.39 0.96
KNN 15.68 0.71 0.88
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+MLP (ours, holdout) 6.09 0.15 0.4
LightGBM 6.85 0.17 0.45
ResNet 8.12 0.22 0.49
SAINT 8.77 0.23 0.52
MLP 10.79 0.39 0.96
KNN 15.68 0.71 0.88

Accepted ICML and
NeurlPS papers (that
claim SOTA)



Motivation 1: Unreliable Baselines

How to become SOTA on the highly used benchmark by McElfresh et al. (2023):

Model Avg. Rank  Avg. norm. logloss  Avg. logloss
XGBoost (ours, SCV) 1.77 0.03 0.34
MLP (ours, SCV) 2.1 0.08 0.34 Accepted ICML and
XGBoost (ours, holdout) 4.13 0.06 0.36 NeurlPS papers (that
XGBoost 5.56 0.1 0.39 claim SOTA)
CatBoost 5.84 0.12 0.45
+MLP (ours, holdout) 6.09 0.15 0.4
LightGBM 6.85 0.17 0.45
ResNet 8.12 0.22 0.49
SAINT 8.77 0.23 0.52
MLP 10.79 0.39 0.96

KNN 15.68 0.71 0.88
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Motivation 3: Inappropriate Evaluation Protocols

Splits must be appropriate for the data:

Time-split
Benchmark
Needed Possible Used
Grinsztajn et al. (2022) 22
Tabzilla (McElfresh et al., 2023) 12
WildTab (Kolesnikov, 2023) |

TableShift (Gardner et al., 2023) 15
Gorishniy et al. (2024) 7
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Motivation 3: Inappropriate Evaluation Protocols

Splits must be appropriate for the data:

Time-split

Benchmark

Needed Possible Used
Grinsztajn et al. (2022) 22 5
Tabzilla (McElfresh et al., 2023) 12 0
WildTab (Kolesnikov, 2023) | 1 X
TableShift (Gardner et al., 2023) 15 3
Gorishniy et al. (2024) 7 |

Percentage Change Over MLP

Benchmark from Gorishniy et al. (2024)

2.21%

2.47%

1.8%

o
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Motivation 3: Inappropriate Evaluation Protocols

Splits must be appropriate for the data:
Percentage Change Over MLP

Benchmark from Gorishniy et al. (2024)

2.47%

Time—split S e LM% 13% U] 134%
Benchmark . .6
Needed Possible Used s ¢ 3 & ¢ 2 i 5 £
2 = = > o 9 Z =
e 5 3§ & &8 i 5
. . = ' = 3
Grinsztajn et al. (2022) 22 5 = = 2
Tabzilla (McElfresh et al., 2023) 12 0 TabReD
" . a (&
WildTab (Kolesnikov, 2023) | 1 X P
TableShift (Gardner et al., 2023) 15 3 g g 2
r . ) 919% . ~ 1.28% A A - [
Gorishniy et al. (2024) 7 | R i = 2 £ 3
E % ; 5 é -1.05%
@ o = o -1.48% —
(>2 3 S = -1.98% .
= A, -2.78%
=

[ ] Models [ ] Ensembles [] Training Methods [ ] Retrieval-Based Models



Motivation Summary

(Partial) Overview of Tabular Benchmarks

Bischl et al. [28, 29]
Gorishniy et al. [30]
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Grinsztajn et al. [32]
McElfresh et al. [33]
Fischer et al. [34]
Gijsbers et al. [35]
Kohli et al. [7]
Tschalzev et al. [8]
Holzmiiller et al. [20]
Ye et al. [36]

Rubacheyv et al. [10]
Salinas and Erickson [37]
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Motivation Summary

(Partial) Overview of Tabular Benchmarks

Bischl et al. [28, 29]
Gorishniy et al. [30]
Shwartz-Ziv and Armon [31]
Grinsztajn et al. [32]
McElfresh et al. [33]

Fischer et al. [34]

Gijsbers et al. [35]

Kohli et al. [7]

Tschalzev et al. [8]
Holzmiiller et al. [20]

Ye et al. [36] .
Rubachev et al. [10] Benchmarks require

Salinas and Erickson [37] continuous updates!

B N
ch. Ar

&

One more b should fix it!

Erickson, Nick, et al. "TabArena: A Living Benchmark for Machine Learning on
Tabular Data." (2025).
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As we show later, TabArena enables AutoML to:

 find the best models we should integrate into AutoML systems
e simulate complex ensemble pipelines

* meta-learn model portfolios (a.k.a. zero-shot HPO)

« transfer academic work/models into usable industry pipelines



Background

Relevance to AutoML: many successful AutoML systems focus on IID tabular data

As we show later, TabArena enables AutoML to:

 find the best models we should integrate into AutoML systems
e simulate complex ensemble pipelines

* meta-learn model portfolios (a.k.a. zero-shot HPO)

« transfer academic work/models into usable industry pipelines

TabArena, a research platform for AutoML 't
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Overview

For representative benchmarking,
we need representative

L4

Datasets

Q |f

and an explicit m to represent.

Evaluations

Because of no free
lunch theorem,
They cannot be a
benchmark for
“everything”
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@ Focus Statement

We focus on:
« Tabular IID data spanning small to large data regime (500-250k samples)
« Predictive machine learning models for real-world classification and regression tasks
« Evaluating the peak performance of models

@' The first truly representative benchmark for our focus to guide researchers and practitioners



@ Focus Statement

We focus on:
« Tabular IID data spanning small to large data regime (500-250k samples)
« Predictive machine learning models for real-world classification and regression tasks
« Evaluating the peak performance of models

@ The first truly representative benchmark for our focus to guide researchers and practitioners

Not our focus / future work:
* Non-IlID data (temporal dependencies or distribution shifts)
» Few-shot predictions, very small data (less than 500 training samples) or very large data
« Tabular data with text and/or semantic context information
« Other tasks such as clustering, subgroup discovery or survival analysis.
« Performance trade-offs



@ Clarifications
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« Making the implicit assumptions explicit — “I| know that | know nothing”
« Clear communication with practitioners and researchers
« Clearly motivating the curation of data and models



@ Clarifications

Why do we focus?
« Making the implicit assumptions explicit — “I know that | know nothing”
« Clear communication with practitioners and researchers
« Clearly motivating the curation of data and models

Why do we care about ML on tabular IID data?
«  Omnipresent traditional ML task in industry and academia
« Playground for model development and a key task for AutoML systems
- Stepping stone for exciting new avenues such as context-aware or non-11D modelling
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Why only small to large data (500-250k)?
 Among the most common data
« Smaller or larger necessitates unique pipelines, models, and evaluation protocols



@ Clarifications

Why only small to large data (500-250k)?
 Among the most common data
« Smaller or larger necessitates unique pipelines, models, and evaluation protocols

Why peak performance (and not trade-offs)?
« Most models can be made much more efficient if their performance is worth it
« Trade-offs require user constraints (per-dataset)
 We already assume a limit of 1 hour!
- Efficiency of the ensemble is relevant, not the individual model
« We can simulate and research this with TabArena!
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Why are models hard to get right?

Search Space Problems:

CatBoost
learning_rate logU(e™®,1)
random_strength Uu{i,2,...,20}
12_leaf reg logl (1, 10)
bagging temperature 4(0.0,1.0)
leaf_estimation_iterations  1/{1,2,...,20}
iterations U{100, 101, ...,4000}

« Copied/summarized from prior work
« Disconnected from the pipeline and
evaluation protocol



9 Why are models hard to get right?

Search Space Problems:

CatBoost
learning_rate logU(e™°,1)
random_strength Uu{i,2,...,20}
12_leaf reg logl (1, 10)
bagging _temperature 4(0.0,1.0)
leaf_estimation_iterations  1/{1,2,...,20}
iterations U{100, 101, ...,4000}

Copied/summarized from prior work
Disconnected from the pipeline and
evaluation protocol

Implementation Problems:

No pip package, undefined dependencies
Untested research code

Custom pipeline per model (with custom bugs)
Insufficient data or know-how for model
choices

Ignorance of target metric or user constraints



Models, Hyperparameters, and Tuning

Model Short Name Search Space Type
m Random Forests [12] RandomForest  Prior Work + Us k4
Extremely Randomized Trees [13] ExtraTrees Prior Work + Us b4
XGBoost [14] XGBoost Prior Work + Us b4
LightGBM [15] LightGBM Prior Work + Us 4
1. SOTA tree-based, CatBoost [16] CatBoost Prior Work + Us 4
neural networks, Explainable Boosting Machine [17, 18] EBM Authors k4
and foundation FastAI MLP [19] FastaiMLP Authors
models. Torch MLP [19] TorchMLP Authors
2. |mp|emented with RealMLP [20] RealMLP Authors
authors TabMLini [9] TabM Authors
3. Good, optimized ModernNCA [21] ModernNCA Authors
search spaces TabPFNv2 [5] TabPFNv2 Authors D
TabICL [22] TabICL - B
TabDPT [23] TabDPT - B
Linear / Logistic Regression Linear TabRepo
K-Nearest Neighbors KNN TabRepo

tree-based (¥), neural network (), pretrained foundation models (®), and baseline ()



Models, Hyperparameters, and Tuning

#splits
Benchmark inner

Bischl et al. [28, 29]
Gorishniy et al. [30]
Shwartz-Ziv and Armon [31]
Grinsztajn et al. [32]
McElfresh et al. [33]

Fischer et al. [34] {1, 3, 10]
Gijsbers et al. [35] -
Kohli et al. [7] 1

Tschalzev et al. [8] 10

Holzmiiller et al. [20]
Ye et al. [36]

Rubachev et al. [10]

Salinas and Erickson [37]
TabArena (Ours)

Peak Performance by:
* Proper (inner) cross-validation
to avoid overfitting

P — p— — —
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Models, Hyperparameters, and Tuning

#splits
Benchmark inner Ensembling

Bischl et al. [28, 29]
Gorishniy et al. [30]
Shwartz-Ziv and Armon [31]
Grinsztajn et al. [32]
McElfresh et al. [33]

Fischer et al. [34] {1, 3, 10]
Gijsbers et al. [35] -
Kohli et al. [7] 1

Tschalzev et al. [8] 10

Holzmiiller et al. [20]
Ye et al. [36]

Rubacheyv et al. [10]

Salinas and Erickson [37]
TabArena (Ours)

Peak Performance by:
* Proper (inner) cross-validation
to avoid overfitting

—
e

P — p— — —
—
p—

 Model-wise post-hoc
ensembling (Caruana et al.)

—
N

e
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Models, Hyperparameters, and Tuning

| Models
#splits HPO Limit
Benchmark inner Ensembling #confs. #hours
Bischl et al. [28, 29] 1 X 1 - Peak Performance by:
gt(l’fiShtniYZ?t al-d[% 3 } Ej ; 1100(?0 6 « Proper (inner) cross-validation
wartz-Ziv and Armon - ! PPy
Grinsztajn et al. [32] 1 X 400 - to avoid overfitting
McElfresh et al. [33] I X 30 10 _
Fischer et al. [34] {1, 3, 10} X {-,500} - * Model-wise post-hoc
Gijsbers et al. [35] - ) - 4 ensembling (Caruana et al.)
Kohli et al. [7] I X 100 {3,-}
TsclhallflflV et al.l[i]20] 110 <5 ) 1508) - - Extensive HPO (200 configs, 1
Holzmiiller et al. (v) - :
Ye et al. [36] 1 X 00 - hour per config)
Rubacheyv et al. [10] l (V) 100 -
Salinas and Erickson [37] 8 v 200 200
TabArena (Ours) 8 v 200 200
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Datasets Curation

Datasets

Deduplication - :
iOther domain :Real predictive task |
- 254 alternative | . : Other ' 1ID
1053 version i - 66 1mage i - 49  scientific 149 tinv dat 51
datasets | 167 same but i - 39 forecasting i discovery - 1ny. ata P 52 temporal [ small- to
with unique other names - 13 audio : - 44 deterministic P - 32 guahty me.dlum-
names from o issues : - 16 grouped sized,
13 tabular |- 63 regex + — 12 text - 30 a.rtlﬁlcnal dor 0 License | tabular 1ID
benchmarks sanity check .- 5 control simulate _a tasks
7 similar tasks _ 304 = 121
_ 427 ==
— 562 = 420

Results of our manual curation: 571 out of 1053



Datasets Curation

Datasets
Deduplicati :
S .Other domain ‘Real predictive task
- 254 alternative | . p : Other ' 1ID
1053 version i - 66 1mage i - 49  scientific 149 tinv dat 51
datasets |_ 157 same but i - 39 forecasting discovery - y. ata P 52 temporal small- to
with unique other names - 13 audio i - 44 deterministic - 32 guahty me.dlum-
names from o 1ssues P - 16 grouped sized,
13 tabular - 63 I‘eg?x + - 12 text - 30 a.rtlﬁlClaldor - 9 License : tabular IID
benchmarks sanity check .- 5 control simulate _a tasks
- 7 similar tasks _ 3045 = 121
_ 427, -
—= 562 = 421,

T

Unique datasets

Many surprising duplicates (e.g., AutoML competition datasets)
Very similar tasks (e.g., 5 datasets from one paper, same features different targets)




Datasets Curation

Datasets

Deduplication - :
iQther domain :Real predictive task | .
- 254 alternative | . : Other ' 1ID
1053 version i - 66 1mage i - 49  scientific 149 tinv dat 51
datasets |_ 157 same but i - 39 forecasting discovery - y. ata P 52 temporal small- to
with unique other names - 13 audio i - 44 deterministic ;- 32 guahty me'dlum-
names from o issues - 16 grouped sized,
13 tabular |- 63 regex + — 12 text - 30 a.rtlﬁlmal dor 0 License | tabular IID
benchmarks sanity check .- 5 control simulate _a tasks
- 7 similar tasks _ 3045 = 121
: — 427T:

Tabular Domain Task

« Many datasets that treat images as tables (often very outdated)
« Often, only the original source described the data



Datasets Curation

Datasets

Deduplication - :
iQther domain :Real predictive task | .
- 254 alternative | . : Other ' 1ID
1053 version i - 66 1mage i - 49  scientific 149 tinv dat 51
datasets |_ 157 same but i - 39 forecasting discovery - y. ata P 52 temporal small- to
with unique other names - 13 audio : - 44 deterministic P - 32 guahty me'dlum-
names from o issues - 16 grouped sized,
13 tabular |- 63 regex + — 12 text - 30 a.rtlﬁlmal dor 0 License | tabular IID
benchmarks sanity check .- 5 control simulate _a tasks
7 similar tasks _ 304 = 121
_ 427, -
= 562 = 4210

Predictive ML Task

» Scientific discovery (why/how questions) vs. predictive task
 Real-world data: not deterministic, not artificial, not simulated



Datasets Curation

Datasets
Deduplicati :
S .Other domain ‘Real predictive task
- 254 alternative | . p : Other ' 1ID
1053 version i - 66 1mage i - 49  scientific 149 tinv dat 51
datasets |_ 157 same but i - 39 forecasting discovery - y. ata P 52 temporal small- to
with unique other names - 13 audio : - 44 deterministic - 32 guahty me.dlum-
names from o 1ssues P - 16 grouped sized,
13 tabular - 63 I‘eg?x + - 12 text - 30 a.rtlﬁlClaldor - 9 License : tabular IID
benchmarks sanity check .- 5 control : simulate _a tasks
- 7 similar tasks _ 3045 = 121
_ 427, -
= 562! = 4210
Other

« Many tiny (often old) datasets
» Datasets with preprocessing errors (PCA data leakage), missing source information, and target leakage




Datasets Curation

Datasets
Deduplicati ;
S .Other domain ‘Real predictive task
- 254 alternative | . p : Other ' 1ID
1053 version i - 66 1mage i - 49  scientific 149 tinv dat 51
datasets |_ 157 same but i - 39 forecasting discovery - y. ata P 52 temporal small- to
with unique other names - 13 audio i - 44 deterministic - 32 guahty me'dlum-
names from o = issues - 16 grouped sized,
13 tabular - 63 regi);( +h K - 12 text - 30 ::;Elf]_ilcalieldor - 9 License tabular IID
benchmarks sanity check :_ 5 control ; B 121; _ =1 tasks

similar tasks i

_ 562!

— 304
_ 427

Many borderline cases

Tasks that require non-random splits
Temporal-dependent features / grouped data (e.g., algorithm selection)

IID Tabular Data




Datasets Curation

Datasets

Deduplication - :
{Other domain :Real predictive task
- 254 alternative | . : Other ' 1ID
1053 version i - 66 1mage i - 49  scientific 149 tinv dat 51
datasets | 167 same but i - 39 forecasting i discovery - 1ny. ata P 52 temporal [ small- to
with unique other names - 13 audio : - 44 deterministic P - 32 guahty me.dlum-
names from o issues : - 16 grouped sized,
13 tabular |- 63 regex + — 12 text - 30 a.rtlﬁlcnal dor 0 License | tabular 1ID
benchmarks sanity check .- 5 control simulate _a tasks
7 similar tasks _ 304 = 121
_ 427 ==
= 562 = 4210

Check for yourself and verify our curation:


https://tabarena.ai/dataset-curation

Datasets Curation

Datasets

Deduplication - :
{Other domain ‘Real predictive task
- 254 alternative | . : Other ' 1ID
1053 version - 66 1mage i - 49  scientific 149 tinv dat 51
datasets | 167 same but i - 39 forecasting i discovery - 1ny. ata P - 52 temporal [ small- to
with unique other names - 13 audio : - 44 deterministic P - 32 guahty me.dlum-
names from o 1SSues i - 16 grouped sized,
13 tabular |- 63 regex + — 12 text - 30 a.rtlﬁlcnal dor . 0 License tabular 1ID
benchmarks sanity check .- 5 control simulate e tasks
- 7 similar tasks _ 304 = 121;
_ 562; — 427
Check for yourself and verify our curation: Smaller is better!

Sometimes at least...

T— T



https://tabarena.ai/dataset-curation

Datasets Overview

Datasets

Number of Datasets

30

20

10

Task License Source Age

UCI Kaggle OpenML Other 0-5 Years 6-15 Years 16+ Years

Binary Regression Multiclass CCBY 4.0 Public Other
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Compared to Prior Benchmarks

Datasets

Manual #datasets
Benchmark curation remaining

Bischl et al. [28, 29] X 9172
Gorishniy et al. [30] v 1/11
Shwartz-Ziv and Armon [31] X 1/11
Grinsztajn et al. [32] v 12/47
McElfresh et al. [33] X 13/196
Fischer et al. [34] v 8/35
Gijsbers et al. [35] v 15/104
Kohli et al. [7] v 17/187
Tschalzev et al. [8] v 1/10
Holzmiiller et al. [20] v 10/118
Ye et al. [36] X 39/300
Rubacheyv et al. [10] v 0/8
Salinas and Erickson [37] X 19/200
TabArena (Ours) v 51/51
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Evaluation Design

1.

Repeat experiments per dataset:

. 30 times for data with less than 2500 samples (10-repeated 3-fold cv)
. 9 times for all other data (3-repeated 3-fold cv)

Using the Elo rating system

. pairwise model comparison

. 400-point Elo Gap corresponds to a 10 to 1 (91%) win rate

Robust metrics appropriate for benchmarking

. Binary: ROC AUC

. Multiclass: Log Loss

. Regression: RMSE
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Evaluation Design

Evaluations

1.

Repeat experiments per dataset:

. 30 times for data with less than 2500 samples (10-repeated 3-fold cv)
. 9 times for all other data (3-repeated 3-fold cv)

Using the Elo rating system

. pairwise model comparison

. 400-point Elo Gap corresponds to a 10 to 1 (91%) win rate
Robust metrics appropriate for benchmarking

. Binary: ROC AUC

. Multiclass: Log Loss

. Regression: RMSE

Realistic reference pipeline for practitioners

. A pipeline practitioners can easily use

. SOTA AutoML, AutoGluon trained for 4 hours

Store and share extensive metadata



Evaluation Design

1.

Repeat experiments per dataset:

30 times for data with less than 2500 samples (10-repeated 3-fold cv)
9 times for all other data (3-repeated 3-fold cv)

Using the Elo rating system

pairwise model comparison

400-point Elo Gap corresponds to a 10 to 1 (91%) win rate

Robust metrics appropriate for benchmarking

Binary: ROC AUC
Multiclass: Log Loss
Regression: RMSE

Realistic reference pipeline for practitioners

A pipeline practitioners can easily use

SOTA AutoML, AutoGluon trained for 4 hours

Store and share extensive metadata

such as: validation predictions (per-fold), test predictions, training time, inference time,

precomputed results on various metrics, hyperparameters — “TabRepo 2.0”
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Using the Elo rating system

pairwise model comparison

400-point Elo Gap corresponds to a 10 to 1 (91%) win rate

Robust metrics appropriate for benchmarking

Binary: ROC AUC
Multiclass: Log Loss
Regression: RMSE

Realistic reference pipeline for practitioners

A pipeline practitioners can easily use

SOTA AutoML, AutoGluon trained for 4 hours

Store and share extensive metadata

such as: validation predictions (per-fold), test predictions, training time, inference time,

precomputed results on various metrics, hyperparameters — “TabRepo 2.0”



I Evaluation Design
lils
#splits Results

Benchmark inner outer  available
Bischl et al. [28, 29] 1 10 (V)
Gorishniy et al. [30] I 1 X
Shwartz-Ziv and Armon [31] 1 (1,3} X
Grinsztajn et al. [32] I {1,2,3,5} (V)
McElfresh et al. [33] 1 10 (V)
Fischer et al. [34] {1, 3,10} {1, 10, 100} V)
Gijsbers et al. [35] - 10 (V)
Kohli et al. [7] I l X
Tschalzev et al. [8] 10 1 X
Holzmiiller et al. [20] I 10 v
Ye et al. [36] I I V)
Rubachev et al. [10] I | (V)
Salinas and Erickson [37] 8 3 v
TabArena (Ours) 8 {9, 30} v
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Main Results (cont.)

Default Tuned Tuned + Ensembled Default Tuned Tuned + Ensembled
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Figure 4: Leaderboard for TabPFNv2-compatible (left) and TabICL-compatible (right) datasets.
For TabPFNv2, we obtain 33 datasets (< 10K training samples, < 500 features). For TabICL, we
obtain 36 classification datasets (< 100K, < 500). Everything but the datasets 1s identical to Figure 1.

Foundation models dominate by default (and with tuning) within their constraints.



Additional Results: Time trade-off
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Additional Results: Hold Holdout!
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Additional Results: Ensembling

SOTA model-agnostic ensembles!

* Fully simulated '~ AutoML system
(AutoGluon-like)

- Significantly better, even with 4 hours
instead of 200 configs

* The real research goal; GBDT vs. Deep
learning is “just” framing

Default

RealMLP
TabM
LightGBM
CatBoost
XGBoost
ModernNCA
TorchMLP
TabDPT
EBM
FastaiMLP
ExtraTrees
RandomForest

Linear
KNN

Tuned Tuned + Ensembled

-3 AutoGluon 1.3 (4h)
TabArena ensemble

1000 1250 1500
Elo

(4h)

1750



Additional Results: What are (maybe) important models?

ModernNCA
RealMLP =
TorchMLP
TabDPT
CatBoost =
TabPFNv2 =
FastaiMLP =
TabM =
TabICL
EBM

RandomForest -_

LightGBM -

XGBoost
ExtraTrees

Linear -
KNN -

0.00 0.05 0.10
Average weight in TabArena ensemble

T
0.15

T
0.20

T
0.25

T
0.30

T
0.35

Contributions to ensembles!

« Contributing most to the ensemble must be
important (?)

Future work:
 Can we deprecate unimportant models?

» Approach likely not representative due to
overfitting
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Hugging Face Leaderboard:

TabArena Leaderboard for Predictive Machine Learning on IID Tabular Data

TabArena is a living benchmark system for predictive machine learning on tabular data. The goal of TabArena and its leaderboard is to asses the peak performance of model-specific pipelines.

P Datasets « & Models

Metrics M Reference Pipeline
B More Details

B Citation

Bf TabArena Overview
The ranking of all models (with imputation) across various leaderboards.
Type Model Classification Regression 4 TabICL-data 4 TabPFN-data
o8 RealMLP (tuned + ensemble) 1
o8 TabM (tuned + ensemble) 7
LightGBM (tuned + ensemble)
CatBoost (tuned + ensemble)
CatBoost (tuned)
TabM (tuned)
LightGBM (tuned)
XGBoost (tuned + ensemble)
ModernNCA (tuned + ensemble)
CatBoost (default)
TabPFNv2 (tuned + ensemble)

XGBoost (tuned)

TabPFN/ICL-data
4
2
7

10



https://tabarena.ai/

Living Benchmark: First Steps

Il [WIP][New Model] TabFlex v Il Mitra
#171 opened 4 days ago by @ LennartPurucker updated 4 days ago
‘ y> 98 @ OF o #161 opened last month by (@ xiyuanzh ) () updated last week

new model

Il [WIP][New Model] PerpetualBoosting
I'l update to EBM hyperparameters . =
#170 opened 4 days ago by (@ LennartPurucker @ updated 4 days ago

e |

1ed on May 30 by @ paulbkoch | « 1
new model

ew Model] BETA-TabPFN v Il [WIP][New Model] Dynamic Programming Decision Trees

#172 opened 4 days ago by @M LennartPurucker #176 opened 3 days ago by #PKohlerHECTOR ) () updated 3 days ago [, 4 tasks

new model new model




Using all our models — or with the next version of AutoGluon :)

from autogluon.core.data import LabelCleaner

from autogluon.features.generators import AutoMLPipelineFeatureGenerator
from sklearn.datasets import load_breast_cancer

from sklearn.metrics import roc_auc_score

from sklearn.model_selection import train_test_split

# Import a TabArena model

from tabrepo.benchmark.models.ag.realmlp.realmlp_model import RealMLPModel

# Get Data

X, y = load_breast_cancer(return_X_y=True, as_frame=True)

X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.5, random_state=42

)

# Preprocessing

feature_generator, label_cleaner = (
AutoMLPipelineFeatureGenerator(),
LabelCleaner.construct(problem_type="binary", y=y),

)

X_train, y_train = (
feature_generator.fit_transform(X_train),

label_cleaner.transform(y_train),

)

X_test, y_test = feature_generator.transform(X_test), label_cleaner.transform(y_test)

# Train TabArena Model
clf = RealMLPModel()
clf.fit(X=X_train, y=y_train)

# Predict and score

prediction_probabilities = clf.predict_proba(X=X_test)

print("ROC AUC:", roc_auc_score(y_test, prediction_probabilities))


https://tabarena.ai/code-examples
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Cheaper Evaluation For Papers: TabArena Lite
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TabArena-v1.0?



Open Problems and Future Work

Datasets
- More data diversity: domains, tiny, large, non-IlID, with text, with images, ...

« Evaluation with (expert) preprocessing and feature engineering

Benchmarking
« Overfitting the benchmark (?)
- Bias from data contamination due to pretraining foundation models or LLMs

 More realistic user constraints and metrics



Takeaways

TabArena is a truly representative benchmark for

Sl machine learning on small- to medium sized IID tabular data.

SOTA CatBoost shines. Deep learning with ensembling dominates.

with Ensembling Promising future for foundation models!

Living TabArena will be updated and
benchmark baby! support more (non-lID) data, models, and tasks.




Thank you, any questions?

Leaderboard: https://tabarena.ai

Paper: https://arxiv.org/abs/2506.16791
Code: https://tabarena.ai/code



https://tabarena.ai/
https://arxiv.org/abs/2506.16791
https://tabarena.ai/code
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