

A Journey of Tabular Benchmarks: Lessons in Method Comparison and Curation

Oxford ML School

David Salinas. Aug 2025.

MENU DU JOUR

"A Journey of Tabular Benchmarks: Lessons in Curation and Method Comparison"

ENTRÉES

- **TabRepo - A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications (25 min)**

A carefully curated appetizer to stimulate your appetite for comprehensive tabular data evaluation

MENU PRINCIPAL

- **TabArena: A Living Benchmark for Machine Learning on Tabular Data (50 min)**

Our signature dish - a robust and evolving benchmark that will satisfy your hunger for rigorous evaluation

DESSERT

- **A Delicious Case for Openness (5 min)**

A sweet case promoting transparency and collaborative building of LLMs

Questions can be asked throughout all the talk!

We will also keep ~10 minutes for discussion at the end.

MENU DU JOUR

"A Journey of Tabular Benchmarks: Lessons in Curation and Method Comparison"

ENTRÉES

- **TabRepo - A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications (25 min)**

A carefully curated appetizer to stimulate your appetite for comprehensive tabular data evaluation

MENU PRINCIPAL

- **TabArena: A Living Benchmark for Machine Learning on Tabular Data (50 min)**

Our signature dish - a robust and evolving benchmark that will satisfy your hunger for rigorous evaluation

DESSERT

- **A Delicious Case for Openness (5 min)**

A sweet case promoting transparency and collaborative building of LLMs

Questions can be asked throughout all the talk!

We will also keep ~10 minutes for discussion at the end.

Part I

TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications

Tabular prediction

Tabular prediction

- Tabular prediction: problem definition

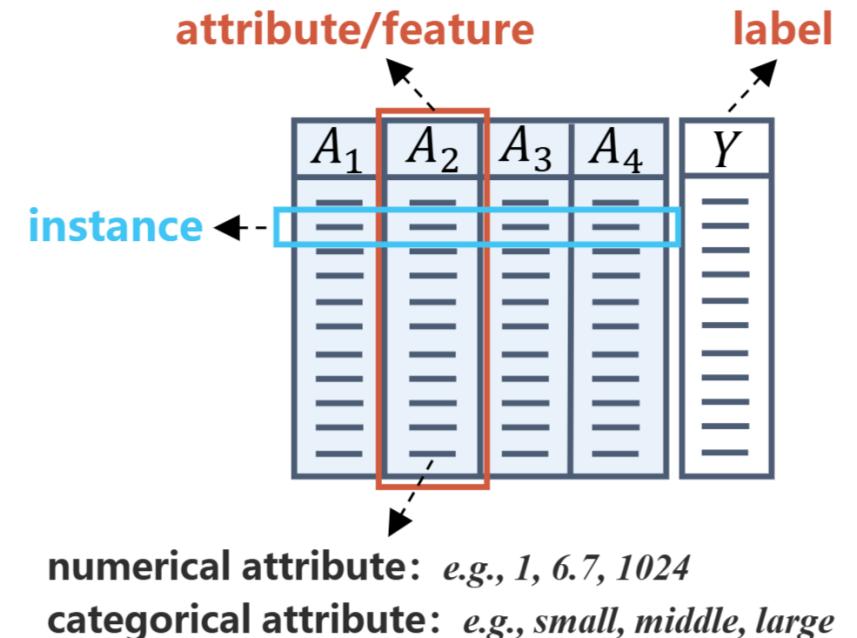
Tabular prediction

- Tabular prediction: problem definition
- A quick glance at the current SOTA tabular system: AutoGluon

Tabular prediction

- Tabular prediction: problem definition
- A quick glance at the current SOTA tabular system: AutoGluon
- Improving AutoGluon with offline evaluations and portfolio (meta- learning

Tabular prediction

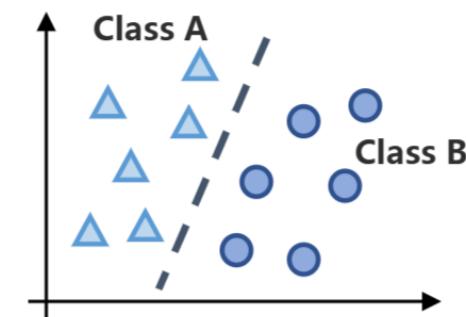


```
import pandas as pd
from autogluon.tabular import TabularPredictor

df_train = pd.read_csv('train.csv')
df_test = pd.read_csv('train.csv')

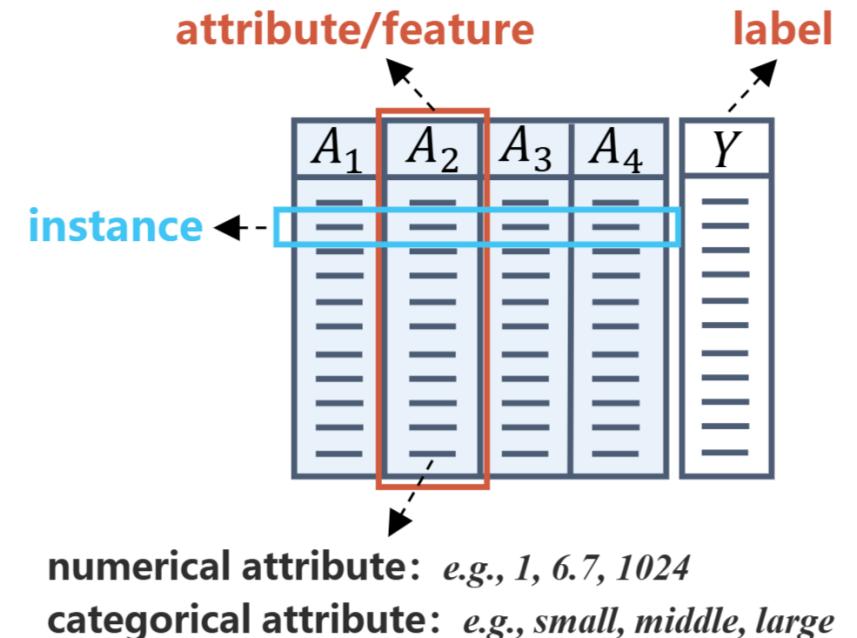
predictor = TabularPredictor(label='class').fit(df_train)
predictions = predictor.predict(df_test)
```

classification



Tabular prediction

- Input: a training data frame, a target column and a training time budget

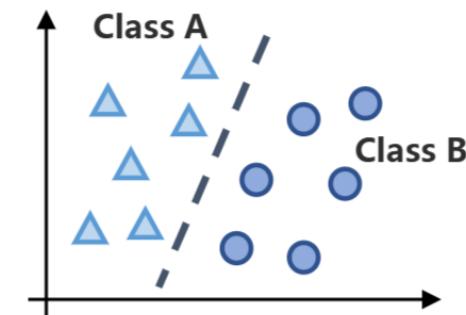


```
import pandas as pd
from autogluon.tabular import TabularPredictor

df_train = pd.read_csv('train.csv')
df_test = pd.read_csv('train.csv')

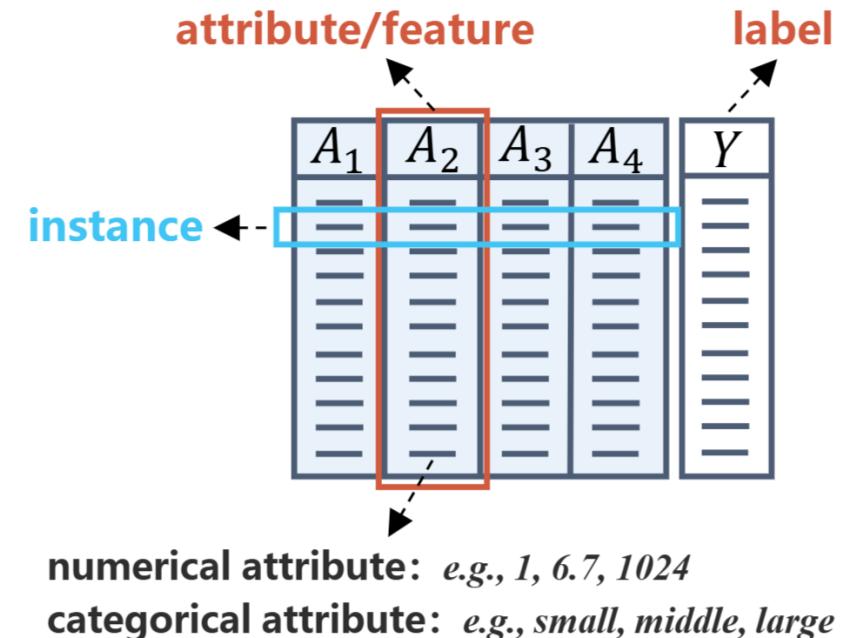
predictor = TabularPredictor(label='class').fit(df_train)
predictions = predictor.predict(df_test)
```

classification



Tabular prediction

- Input: a training data frame, a target column and a training time budget
- Output: a predictor able to give predictions given a test dataframe

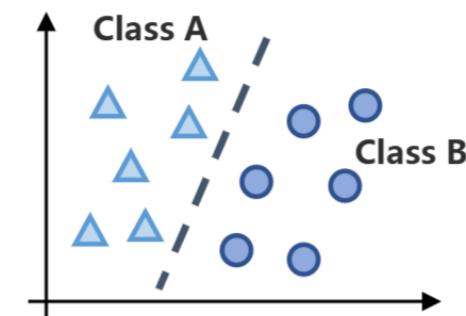


```
import pandas as pd
from autogluon.tabular import TabularPredictor

df_train = pd.read_csv('train.csv')
df_test = pd.read_csv('train.csv')

predictor = TabularPredictor(label='class').fit(df_train)
predictions = predictor.predict(df_test)
```

classification



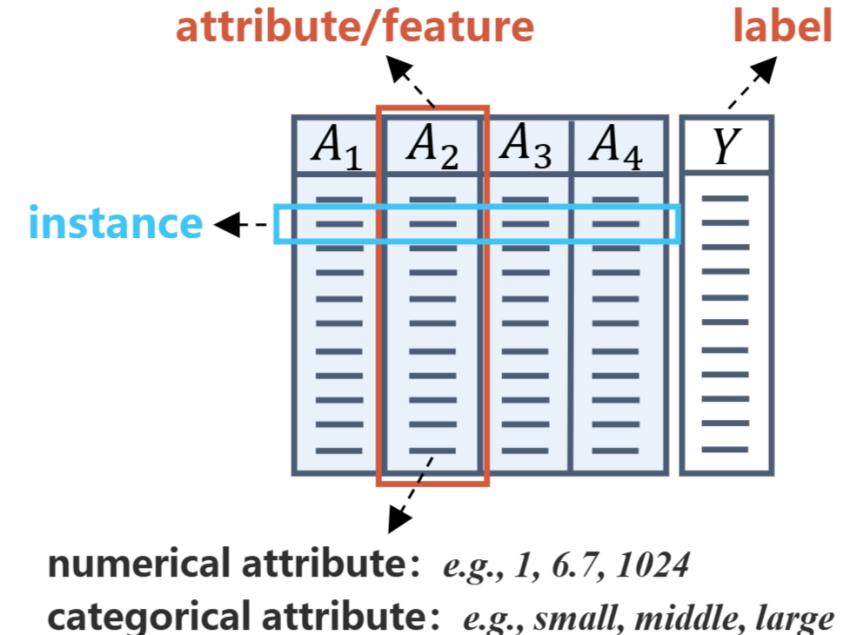
Tabular prediction

- Input: a training data frame, a target column and a training time budget
- Output: a predictor able to give predictions given a test dataframe
- Metrics:
 - RMSE (regression), log-prob (classification)
 - Prediction latency, memory, ...

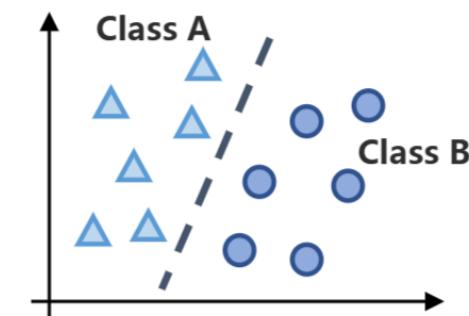
```
import pandas as pd
from autogluon.tabular import TabularPredictor

df_train = pd.read_csv('train.csv')
df_test = pd.read_csv('train.csv')

predictor = TabularPredictor(label='class').fit(df_train)
predictions = predictor.predict(df_test)
```



classification



What is the best Tabular method?

- AutoML Benchmark [Ginsberg et al 2023] considered 71 classification and 33 regression datasets

What is the best Tabular method?

- AutoML Benchmark [Ginsberg et al 2023] considered 71 classification and 33 regression datasets

Journal of Machine Learning Research 1 (2000) 1-48

Submitted 4/00; Published 10/00

AMLB: an AutoML Benchmark

Pieter Gijsbers¹

P.GIJSBERS@TUE.NL

Marcos L. P. Bueno^{1,4}

MARCOS.DEPAULABUENO@DONDERS.RU.NL

Stefan Coors²

STEFAN.COORS@STAT.UNI-MUENCHEN.DE

Erin LeDell³

ERIN@H2O.AI

Sébastien Poirier³

SEBASTIEN@H2O.AI

Janek Thomas²

JANEK.THOMAS@STAT.UNI-MUENCHEN.DE

Bernd Bischl²

BERND.BISCHL@STAT.UNI-MUENCHEN.DE

Joaquin Vanschoren¹

J.VANSCHOREN@TUE.NL

¹ EINDHOVEN UNIVERSITY OF TECHNOLOGY, EINDHOVEN, THE NETHERLANDS

² LUDWIG MAXIMILIAN UNIVERSITY OF MUNICH, MUNICH, GERMANY

³ H2O.AI, MOUNTAIN VIEW, CA, UNITED STATES

⁴ RADBOUD UNIVERSITY, NIJMEGEN, THE NETHERLANDS

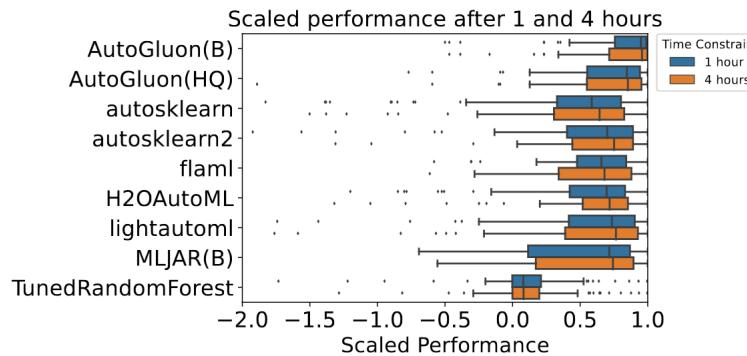


Figure 4: Scaled performance for each framework under different time constraints. Only frameworks which have evaluations on all tasks for both time constraints are shown. Performance generally does not improve much with more time.

What is the best Tabular method?

- AutoML Benchmark [Ginsberg et al 2023] considered 71 classification and 33 regression datasets

Journal of Machine Learning Research 1 (2000) 1-48

Submitted 4/00; Published 10/00

AMLB: an AutoML Benchmark

Pieter Gijsbers¹

P.GIJSBERS@TUE.NL

Marcos L. P. Bueno^{1,4}

MARCOS.DEPAULABUENO@DONDERS.RU.NL

Stefan Coors²

STEFAN.COORS@STAT.UNI-MUENCHEN.DE

Erin LeDell³

ERIN@H2O.AI

Sébastien Poirier³

SEBASTIEN@H2O.AI

Janek Thomas²

JANEK.THOMAS@STAT.UNI-MUENCHEN.DE

Bernd Bischl²

BERND.BISCHL@STAT.UNI-MUENCHEN.DE

Joaquin Vanschoren¹

J.VANSCHOREN@TUE.NL

¹ EINDHOVEN UNIVERSITY OF TECHNOLOGY, EINDHOVEN, THE NETHERLANDS

² LUDWIG MAXIMILIAN UNIVERSITY OF MUNICH, MUNICH, GERMANY

³ H2O.AI, MOUNTAIN VIEW, CA, UNITED STATES

⁴ RADBOUD UNIVERSITY, NIJMEGEN, THE NETHERLANDS

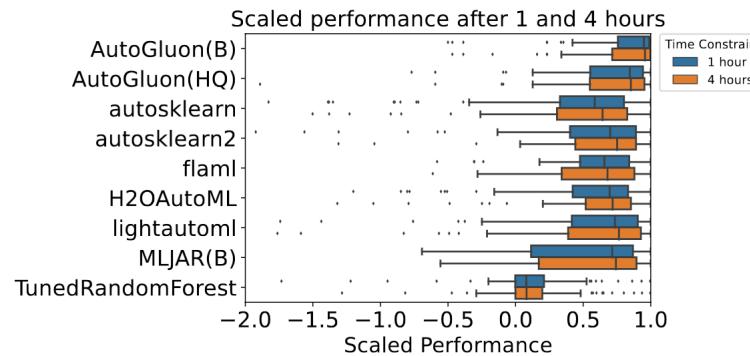


Figure 4: Scaled performance for each framework under different time constraints. Only frameworks which have evaluations on all tasks for both time constraints are shown. Performance generally does not improve much with more time.

- Considered 9 AutoML frameworks, evaluated on 1h and 4h fitting budget

What is the best Tabular method?

- AutoML Benchmark [Ginsberg et al 2023] considered 71 classification and 33 regression datasets

Journal of Machine Learning Research 1 (2000) 1-48

Submitted 4/00; Published 10/00

AMLB: an AutoML Benchmark

Pieter Gijsbers¹

P.GIJSBERS@TUE.NL

Marcos L. P. Bueno^{1,4}

MARCOS.DEPAULABUENO@DONDERS.RU.NL

Stefan Coors²

STEFAN.COORS@STAT.UNI-MUENCHEN.DE

Erin LeDell³

ERIN@H2O.AI

Sébastien Poirier³

SEBASTIEN@H2O.AI

Janek Thomas²

JANEK.THOMAS@STAT.UNI-MUENCHEN.DE

Bernd Bischl²

BERND.BISCHL@STAT.UNI-MUENCHEN.DE

Joaquin Vanschoren¹

J.VANSCHOREN@TUE.NL

¹ EINDHOVEN UNIVERSITY OF TECHNOLOGY, EINDHOVEN, THE NETHERLANDS

² LUDWIG MAXIMILIAN UNIVERSITY OF MUNICH, MUNICH, GERMANY

³ H2O.AI, MOUNTAIN VIEW, CA, UNITED STATES

⁴ RADBOUD UNIVERSITY, NIJMEGEN, THE NETHERLANDS

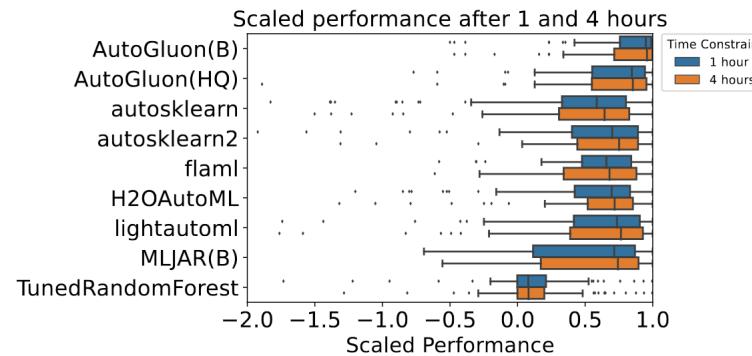


Figure 4: Scaled performance for each framework under different time constraints. Only frameworks which have evaluations on all tasks for both time constraints are shown. Performance generally does not improve much with more time.

- Considered 9 AutoML frameworks, evaluated on 1h and 4h fitting budget
- AutoGluon was then the best model by a large margin

What is the best Tabular method?

- AutoML Benchmark [Ginsberg et al 2023] considered 71 classification and 33 regression datasets

Journal of Machine Learning Research 1 (2000) 1-48

Submitted 4/00; Published 10/00

AMLB: an AutoML Benchmark

Pieter Gijsbers¹

P.GIJSBERS@TUE.NL

Marcos L. P. Bueno^{1,4}

MARCOS.DEPAULABUENO@DONDERS.RU.NL

Stefan Coors²

STEFAN.COORS@STAT.UNI-MUENCHEN.DE

Erin LeDell³

ERIN@H2O.AI

Sébastien Poirier³

SEBASTIEN@H2O.AI

Janek Thomas²

JANEK.THOMAS@STAT.UNI-MUENCHEN.DE

Bernd Bischl²

BERND.BISCHL@STAT.UNI-MUENCHEN.DE

Joaquin Vanschoren¹

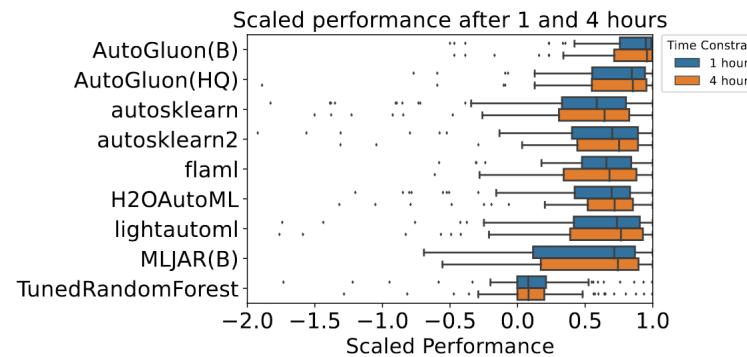
J.VANSCHOREN@TUE.NL

¹ EINDHOVEN UNIVERSITY OF TECHNOLOGY, EINDHOVEN, THE NETHERLANDS

² LUDWIG MAXIMILIAN UNIVERSITY OF MUNICH, MUNICH, GERMANY

³ H2O.AI, MOUNTAIN VIEW, CA, UNITED STATES

⁴ RADBOUD UNIVERSITY, NIJMEGEN, THE NETHERLANDS



Evaluating a single method costs 40K CPU hours of compute!

Figure 4: Scaled performance for each framework under different time constraints. Only frameworks which have evaluations on all tasks for both time constraints are shown. Performance generally does not improve much with more time.

- Considered 9 AutoML frameworks, evaluated on 1h and 4h fitting budget
- AutoGluon was then the best model by a large margin

What is the best Tabular method?

- AutoML Benchmark [Ginsberg et al 2023] considered 71 classification and 33 regression datasets

Journal of Machine Learning Research 1 (2000) 1-48

Submitted 4/00; Published 10/00

AMLB: an AutoML Benchmark

Pieter Gijsbers¹

P.GIJSBERS@TUE.NL

Marcos L. P. Bueno^{1,4}

MARCOS.DEPAULABUENO@DONDERS.RU.NL

Stefan Coors²

STEFAN.COORS@STAT.UNI-MUENCHEN.DE

Erin LeDell³

ERIN@H2O.AI

Sébastien Poirier³

SEBASTIEN@H2O.AI

Janek Thomas²

JANEK.THOMAS@STAT.UNI-MUENCHEN.DE

Bernd Bischl²

BERND.BISCHL@STAT.UNI-MUENCHEN.DE

Joaquin Vanschoren¹

J.VANSCHOREN@TUE.NL

¹ EINDHOVEN UNIVERSITY OF TECHNOLOGY, EINDHOVEN, THE NETHERLANDS

² LUDWIG MAXIMILIAN UNIVERSITY OF MUNICH, MUNICH, GERMANY

³ H2O.AI, MOUNTAIN VIEW, CA, UNITED STATES

⁴ RADBOUD UNIVERSITY, NIJMEGEN, THE NETHERLANDS

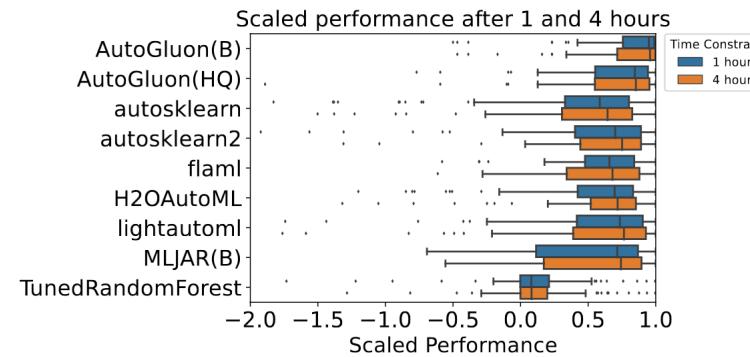


Figure 4: Scaled performance for each framework under different time constraints. Only frameworks which have evaluations on all tasks for both time constraints are shown. Performance generally does not improve much with more time.

Evaluating a single method costs 40K CPU hours of compute!

Can we limit this cost? 🤔

- Considered 9 AutoML frameworks, evaluated on 1h and 4h fitting budget
- AutoGluon was then the best model by a large margin

What is the best Tabular method?

- AutoML Benchmark [Ginsberg et al 2023] considered 71 classification and 33 regression datasets

Journal of Machine Learning Research 1 (2000) 1-48

Submitted 4/00; Published 10/00

AMLB: an AutoML Benchmark

Pieter Gijsbers¹

P.GIJSBERS@TUE.NL

Marcos L. P. Bueno^{1,4}

MARCOS.DEPAULABUENO@DONDERS.RU.NL

Stefan Coors²

STEFAN.COORS@STAT.UNI-MUENCHEN.DE

Erin LeDell³

ERIN@H2O.AI

Sébastien Poirier³

SEBASTIEN@H2O.AI

Janek Thomas²

JANEK.THOMAS@STAT.UNI-MUENCHEN.DE

Bernd Bischl²

BERND.BISCHL@STAT.UNI-MUENCHEN.DE

Joaquin Vanschoren¹

J.VANSCHOREN@TUE.NL

¹ EINDHOVEN UNIVERSITY OF TECHNOLOGY, EINDHOVEN, THE NETHERLANDS

² LUDWIG MAXIMILIAN UNIVERSITY OF MUNICH, MUNICH, GERMANY

³ H2O.AI, MOUNTAIN VIEW, CA, UNITED STATES

⁴ RADBOUD UNIVERSITY, NIJMEGEN, THE NETHERLANDS

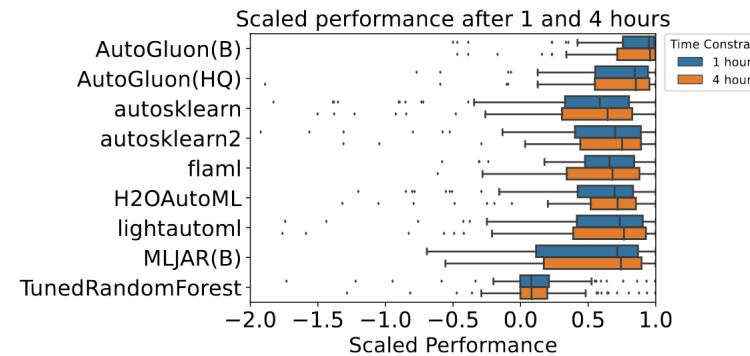


Figure 4: Scaled performance for each framework under different time constraints. Only frameworks which have evaluations on all tasks for both time constraints are shown. Performance generally does not improve much with more time.

Evaluating a single method costs 40K CPU hours of compute!

Can we limit this cost? 🤔

- Considered 9 AutoML frameworks, evaluated on 1h and 4h fitting budget
- AutoGluon best model by a large margin

AutoGluon at a glance

AutoGluon at a glance

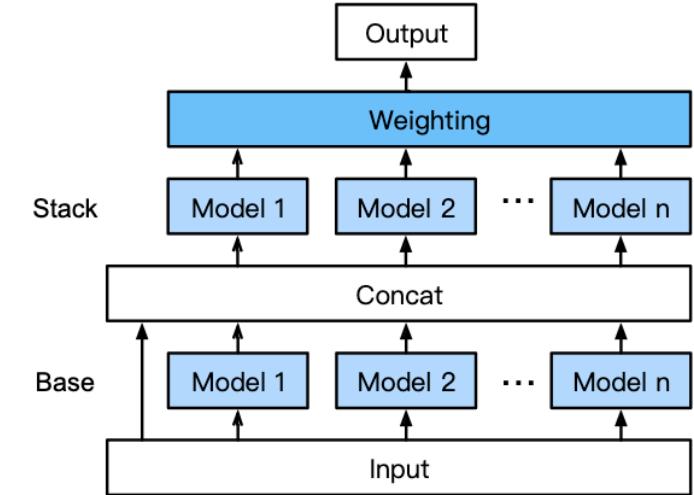


Figure 2. AutoGluon's multi-layer stacking strategy, shown here using two stacking layers and n types of base learners.

AutoGluon at a glance

- AutoGluon (1.1) recipe:

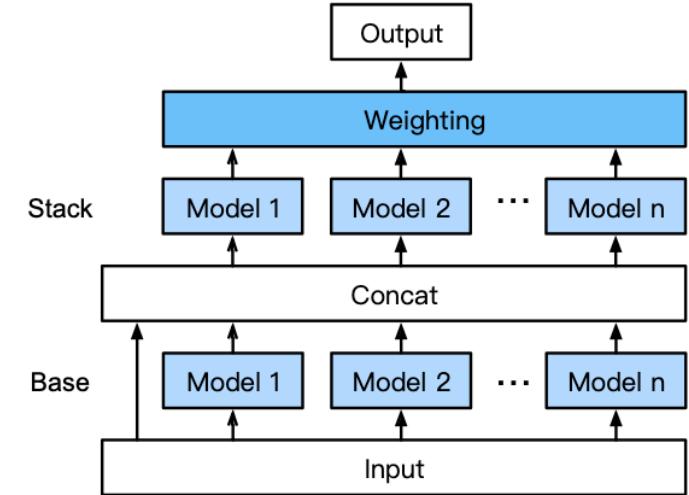


Figure 2. AutoGluon's multi-layer stacking strategy, shown here using two stacking layers and n types of base learners.

AutoGluon at a glance

- AutoGluon (1.1) recipe:
 - Runs 13 models (KNN, linear, Catboost, LightGBM, MLPs, RandomForest, ...) in a first *layer*

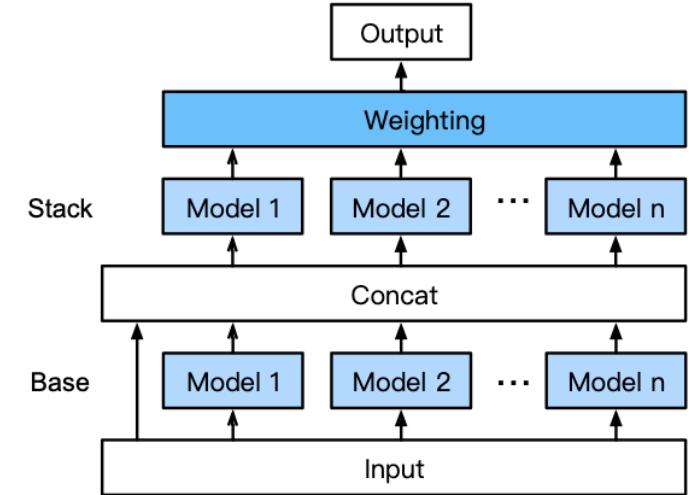


Figure 2. AutoGluon's multi-layer stacking strategy, shown here using two stacking layers and n types of base learners.

AutoGluon at a glance

- AutoGluon (1.1) recipe:
 - Runs 13 models (KNN, linear, Catboost, LightGBM, MLPs, RandomForest, ...) in a first *layer*
 - For each model, Autogluon performs **bagging with out of fold cross-validation**

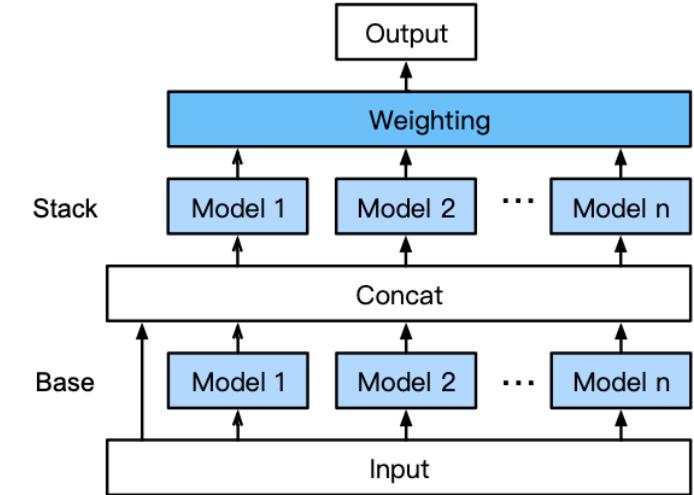


Figure 2. AutoGluon's multi-layer stacking strategy, shown here using two stacking layers and n types of base learners.

AutoGluon at a glance

- AutoGluon (1.1) recipe:
 - Runs 13 models (KNN, linear, Catboost, LightGBM, MLPs, RandomForest, ...) in a first *layer*
 - For each model, Autogluon performs **bagging with out of fold cross-validation**

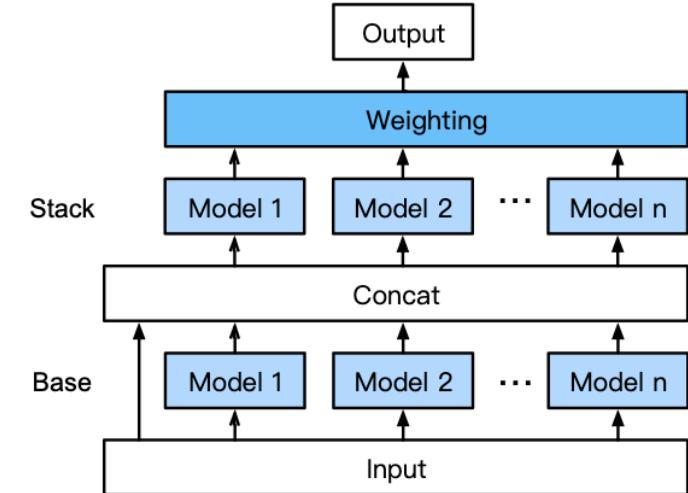


Figure 2. AutoGluon's multi-layer stacking strategy, shown here using two stacking layers and n types of base learners.

	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 1
Split 1						
Split 2						
Split 3						
Split 4						
Split 5						

	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 2
Split 1						
Split 2						
Split 3						
Split 4						
Split 5						

	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 3
Split 1						
Split 2						
Split 3						
Split 4						
Split 5						

	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 4
Split 1						
Split 2						
Split 3						
Split 4						
Split 5						

	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 5
Split 1						
Split 2						
Split 3						
Split 4						
Split 5						

Training data Test data

Out of fold evaluation, image credit: data camp

AutoGluon at a glance

- AutoGluon (1.1) recipe:
 - Runs 13 models (KNN, linear, Catboost, LightGBM, MLPs, RandomForest, ...) in a first *layer*
 - For each model, Autogluon performs **bagging with out of fold cross-validation**
 - Each model is learned on 8 non-overlapping fold of the data and the predictions are averaged

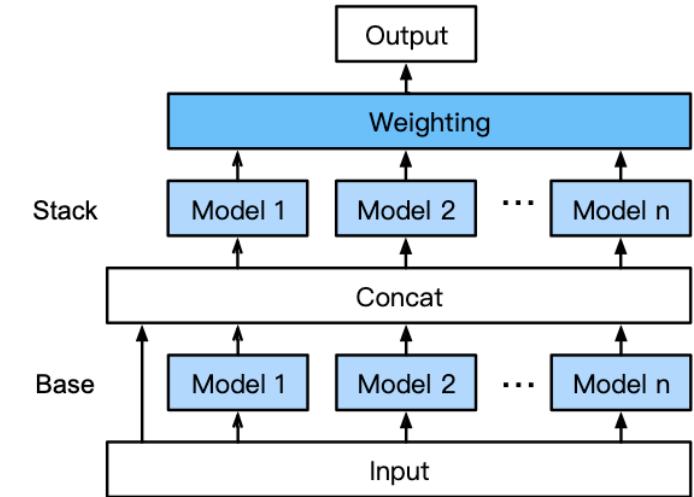


Figure 2. AutoGluon's multi-layer stacking strategy, shown here using two stacking layers and n types of base learners.

	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 1
Split 1	Training data	Test data	Test data	Test data	Test data	Metric 1
Split 2	Test data	Training data	Test data	Test data	Test data	Metric 2
Split 3	Test data	Test data	Training data	Test data	Test data	Metric 3
Split 4	Test data	Test data	Test data	Training data	Test data	Metric 4
Split 5	Test data	Test data	Test data	Test data	Training data	Metric 5

Training data Test data

Out of fold evaluation, image credit: data camp

AutoGluon at a glance

- AutoGluon (1.1) recipe:
 - Runs 13 models (KNN, linear, Catboost, LightGBM, MLPs, RandomForest, ...) in a first *layer*
 - For each model, Autogluon performs **bagging with out of fold cross-validation**
 - Each model is learned on 8 non-overlapping fold of the data and the predictions are averaged
 - Then perform **stacking**: e.g. learn the models again while concatenating the predictions of the first *layer* with the original features

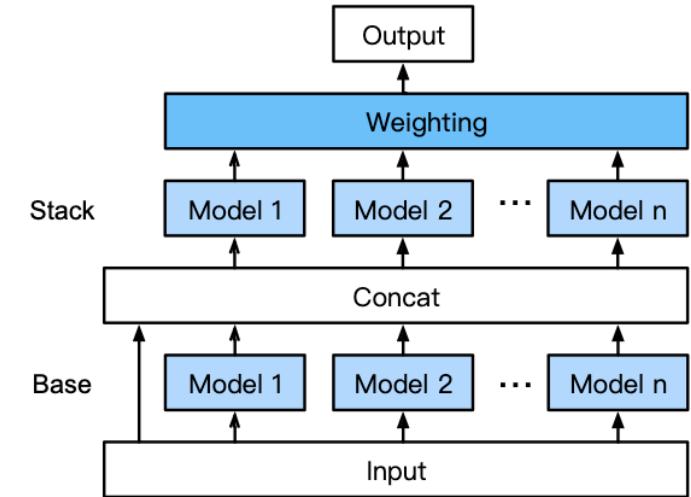


Figure 2. AutoGluon's multi-layer stacking strategy, shown here using two stacking layers and n types of base learners.

	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 1
Split 1	Training data	Test data	Test data	Test data	Test data	Metric 1
Split 2	Test data	Training data	Test data	Test data	Test data	Metric 2
Split 3	Test data	Test data	Training data	Test data	Test data	Metric 3
Split 4	Test data	Test data	Test data	Training data	Test data	Metric 4
Split 5	Test data	Test data	Test data	Test data	Training data	Metric 5

Out of fold evaluation, image credit: data camp

AutoGluon at a glance

- AutoGluon (1.1) recipe:
 - Runs 13 models (KNN, linear, Catboost, LightGBM, MLPs, RandomForest, ...) in a first *layer*
 - For each model, Autogluon performs **bagging with out of fold cross-validation**
 - Each model is learned on 8 non-overlapping fold of the data and the predictions are averaged
 - Then perform **stacking**: e.g. learn the models again while concatenating the predictions of the first *layer* with the original features
 - Then perform **ensembling**: by estimating the weights on hold-out data (Caruana 2004) using validation scores

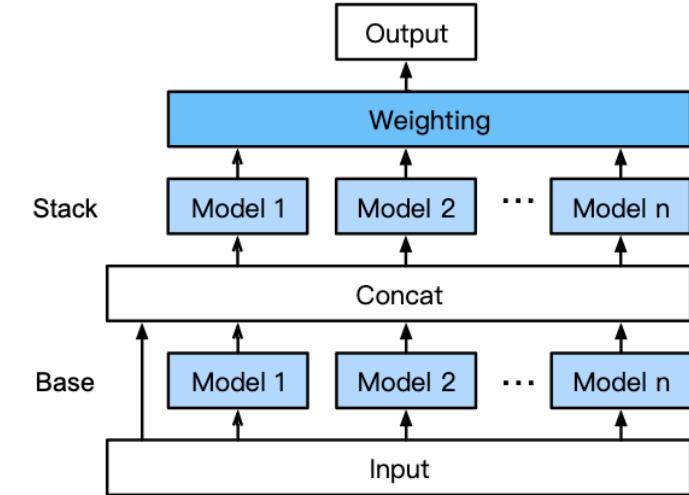


Figure 2. AutoGluon's multi-layer stacking strategy, shown here using two stacking layers and n types of base learners.

	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 1
Split 1						
Split 2						
Split 3						
Split 4						
Split 5						

	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 2
Split 1						
Split 2						
Split 3						
Split 4						
Split 5						

	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 3
Split 1						
Split 2						
Split 3						
Split 4						
Split 5						

	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 4
Split 1						
Split 2						
Split 3						
Split 4						
Split 5						

	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 5
Split 1						
Split 2						
Split 3						
Split 4						
Split 5						

Training data Test data

Out of fold evaluation, image credit: data camp

AutoGluon at a glance

- AutoGluon (1.1) recipe:
 - Runs 13 models (KNN, linear, Catboost, LightGBM, MLPs, RandomForest, ...) in a first *layer*
 - For each model, Autogluon performs **bagging with out of fold cross-validation**
 - Each model is learned on 8 non-overlapping fold of the data and the predictions are averaged
 - Then perform **stacking**: e.g. learn the models again while concatenating the predictions of the first *layer* with the original features
 - Then perform **ensembling**: by estimating the weights on hold-out data (Caruana 2004) using validation scores
 - Let us take a look!

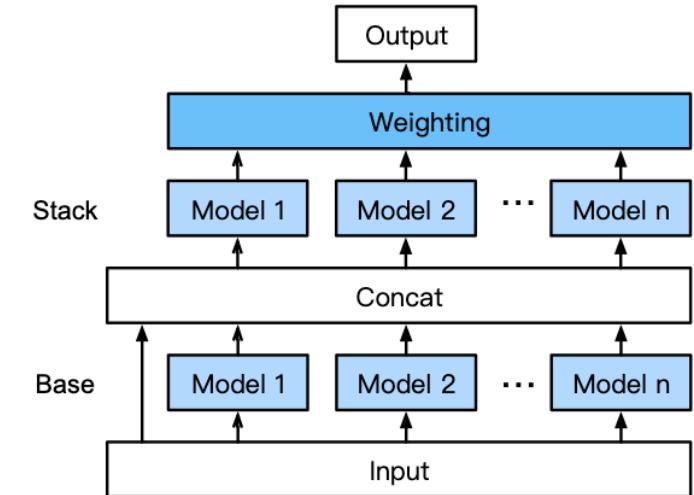
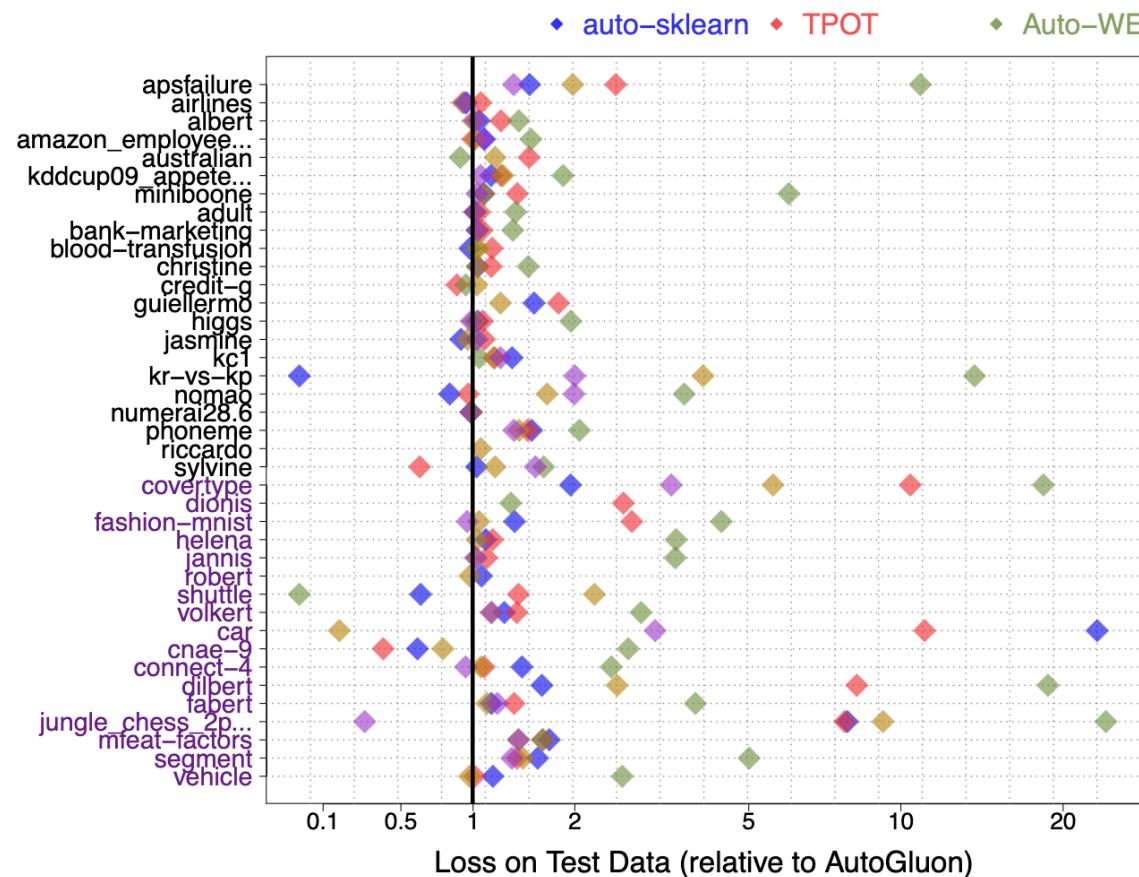


Figure 2. AutoGluon's multi-layer stacking strategy, shown here using two stacking layers and n types of base learners.

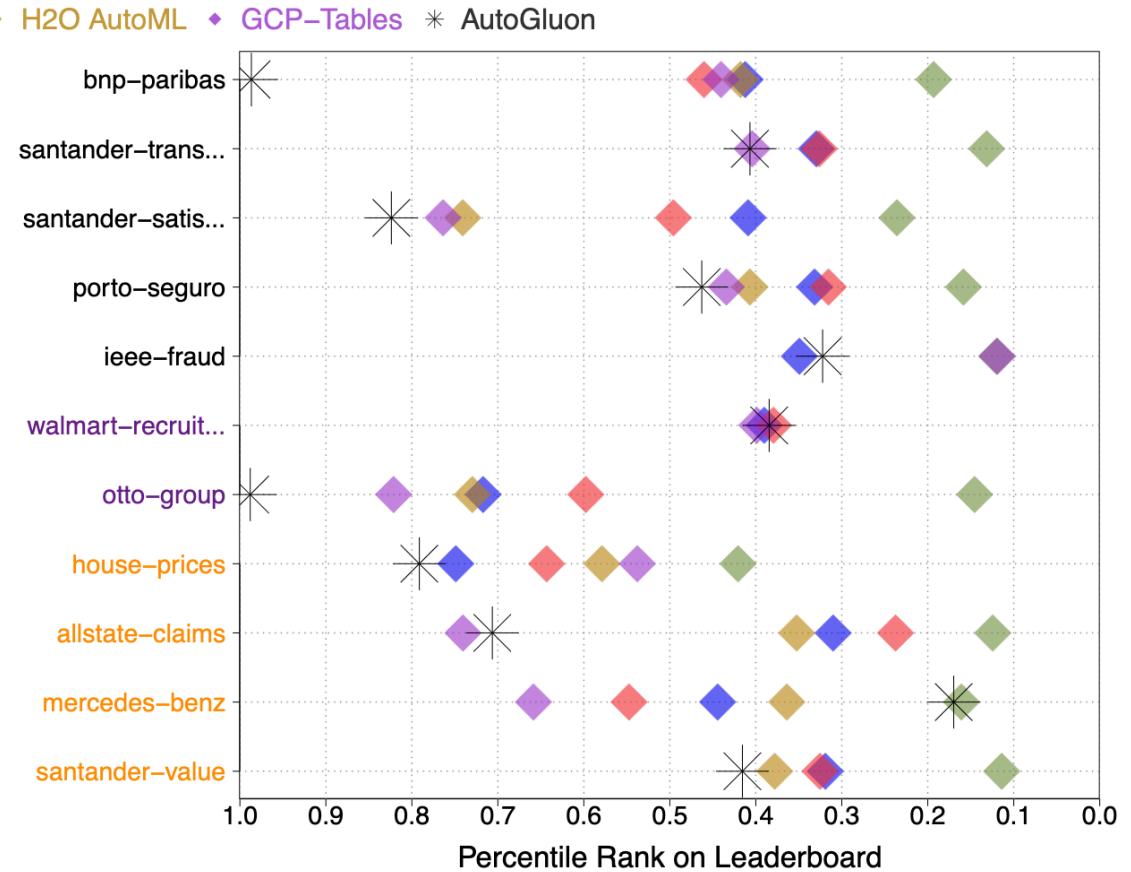
	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 1
Split 1	Training data	Test data	Test data	Test data	Test data	Metric 1
Split 2	Test data	Training data	Test data	Test data	Test data	Metric 2
Split 3	Test data	Test data	Training data	Test data	Test data	Metric 3
Split 4	Test data	Test data	Test data	Training data	Test data	Metric 4
Split 5	Test data	Test data	Test data	Test data	Training data	Metric 5

Out of fold evaluation, image credit: data camp

What is the best Tabular method?



(A) AutoML Benchmark (1h)



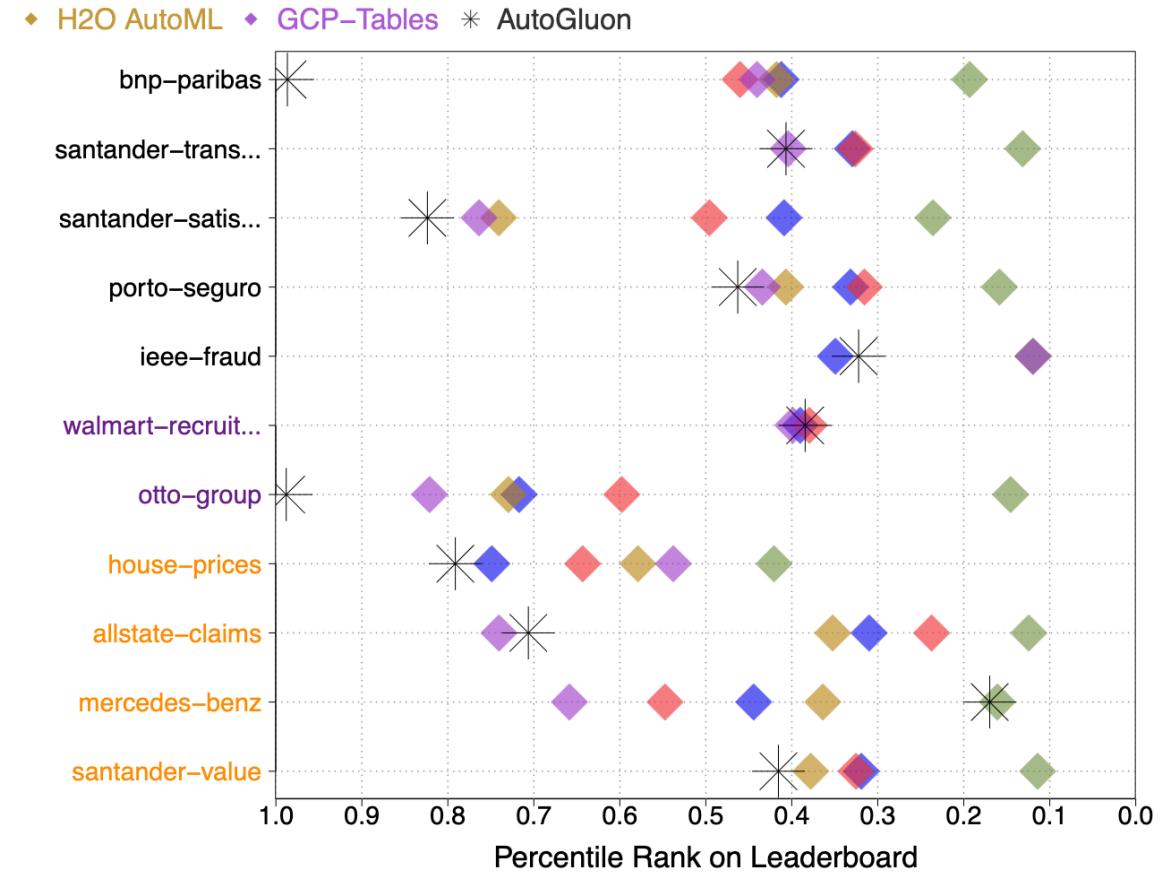
(B) Kaggle Benchmark (4h)

What is the best Tabular method?

Better than all frameworks most of the time

Legend: auto-sklearn (blue diamond), TPOT (red diamond), Auto-WEKA (green diamond), H2O AutoML (orange diamond), GCP-Tables (purple diamond), AutoGluon (asterisk)

(A) AutoML Benchmark (1h)



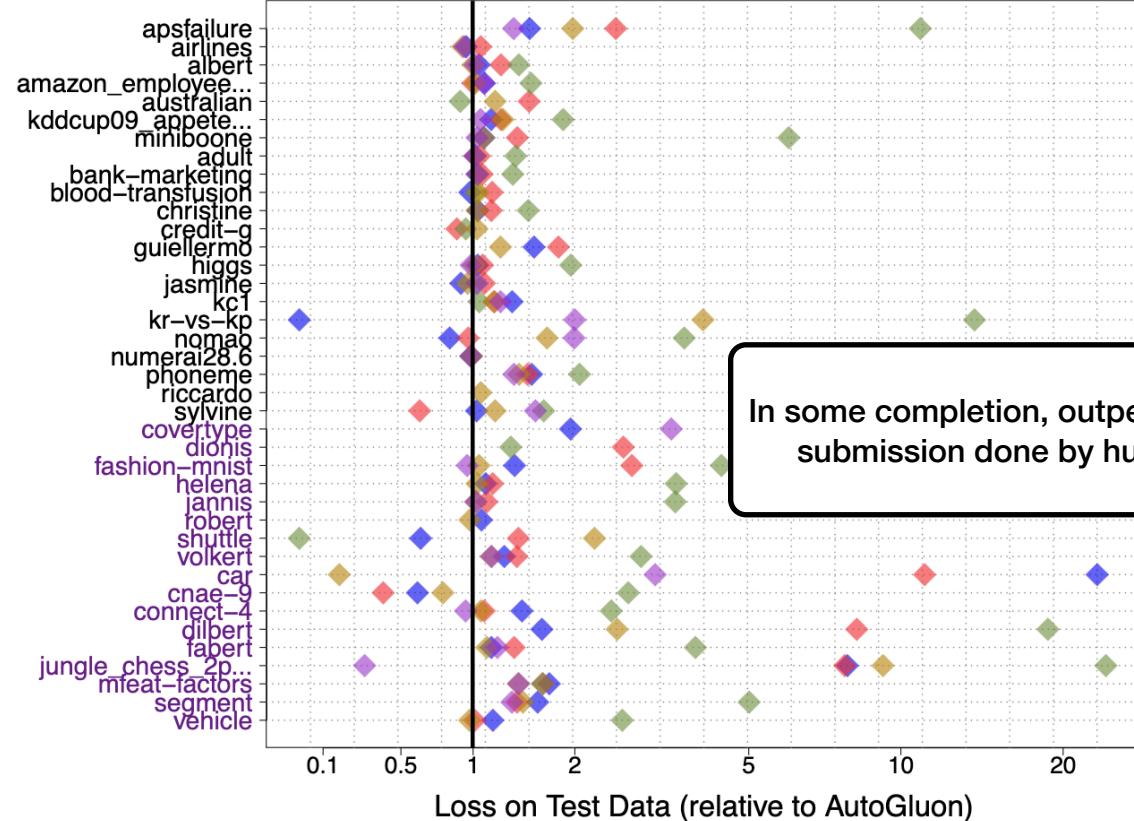
(B) Kaggle Benchmark (4h)

What is the best Tabular method?

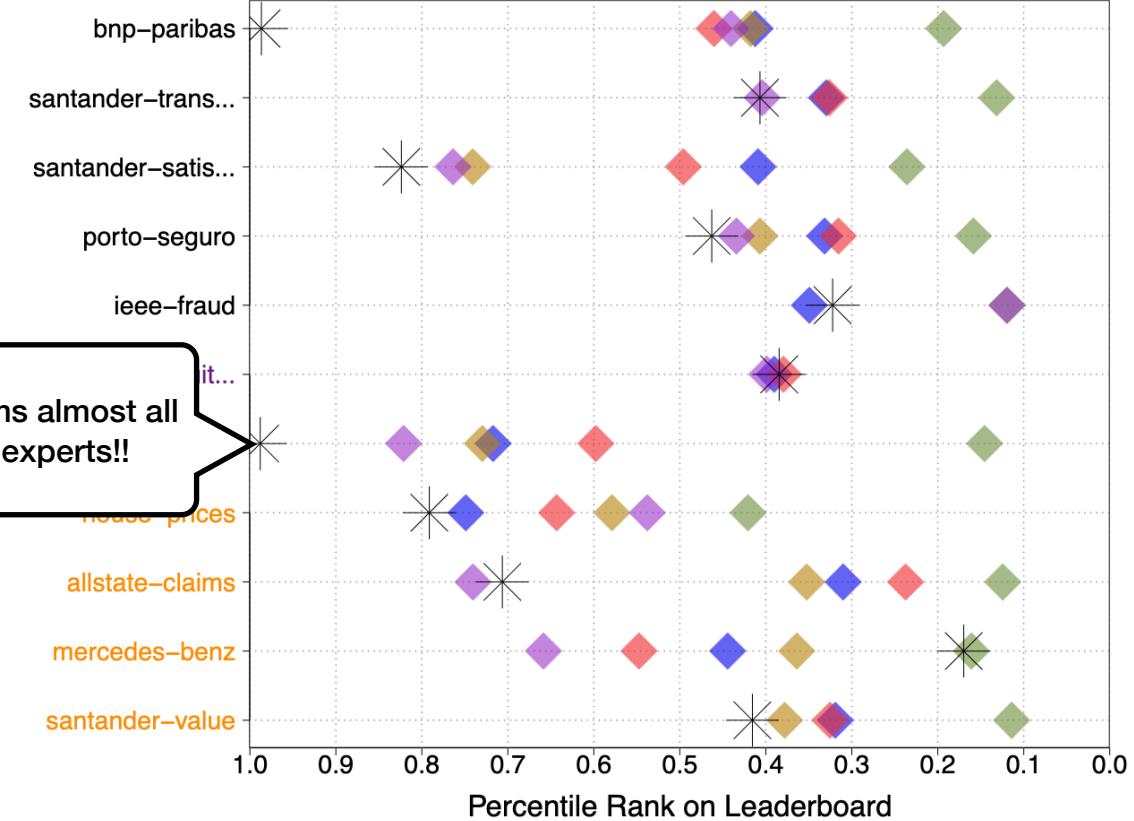
Better than all frameworks most of the time

auto-sklearn TPOT

Auto-WEKA H2O AutoML GCP-Tables AutoGluon



(A) AutoML Benchmark (1h)



(B) Kaggle Benchmark (4h)

AutoGluon

Hyperparameter Optimization (HPO)

AutoGluon

Hyperparameter Optimization (HPO)

- Strikingly, AutoGluon achieved state-of-the-art results **without** HPO with its mix of bagging, stacking, ensembling and good heuristic featurizers

AutoGluon

Hyperparameter Optimization (HPO)

- Strikingly, AutoGluon achieved state-of-the-art results **without** HPO with its mix of bagging, stacking, ensembling and good heuristic featurizers
- It is not that HPO does not help, it does but compute is better spent evaluating a good set of default models (with more folds, more rounds, etc)

AutoGluon

Hyperparameter Optimization (HPO)

- Strikingly, AutoGluon achieved state-of-the-art results **without** HPO with its mix of bagging, stacking, ensembling and good heuristic featurizers
- It is not that HPO does not help, it does but compute is better spent evaluating a good set of default models (with more folds, more rounds, etc)
- AutoGluon default models: 13 default hyperparameters chosen manually by experts

AutoGluon

Hyperparameter Optimization (HPO)

- Strikingly, AutoGluon achieved state-of-the-art results **without** HPO with its mix of bagging, stacking, ensembling and good heuristic featurizers
- It is not that HPO does not help, it does but compute is better spent evaluating a good set of default models (with more folds, more rounds, etc)
- AutoGluon default models: 13 default hyperparameters chosen manually by experts
- Can we do better by automating this?

TabRepo

TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications

David Salinas^{1,*} Nick Erickson^{1,*}

TabRepo

TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications

- Goals:

David Salinas^{1,*} Nick Erickson^{1,*}

TabRepo

TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications

- Goals:

- 1) reduce cost of evaluation (40K CPU hours to evaluate a single method on AutoML Benchmark)

David Salinas^{1,*} Nick Erickson^{1,*}

TabRepo

TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications

- Goals:

- 1) reduce cost of evaluation (40K CPU hours to evaluate a single method on AutoML Benchmark)
- 2) improve over the manual selection of AutoGluon default models

David Salinas^{1,*} Nick Erickson^{1,*}

TabRepo

TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications

- Goals:

- 1) reduce cost of evaluation (40K CPU hours to evaluate a single method on AutoML Benchmark)
 - 2) improve over the manual selection of AutoGluon default models

- Precomputed evaluations and results on:

TabRepo

TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications

- Goals:

- 1) reduce cost of evaluation (40K CPU hours to evaluate a single method on AutoML Benchmark)
 - 2) improve over the manual selection of AutoGluon default models
- Precomputed evaluations and results on:
 - 200 datasets from regression, classification, multi-class (thanks OpenML 😊)

David Salinas^{1,*} Nick Erickson^{1,*}

TabRepo

TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications

- Goals:

- 1) reduce cost of evaluation (40K CPU hours to evaluate a single method on AutoML Benchmark)
 - 2) improve over the manual selection of AutoGluon default models

- Precomputed evaluations and results on:

- 200 datasets from regression, classification, multi-class (thanks OpenML 😊)
 - 200 random configurations of models used in AutoGluon (CatBoost, MLP, LightGBM, RandomForest, ...) on all datasets with 3 seeds

TabRepo

TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications

- Goals:

- 1) reduce cost of evaluation (40K CPU hours to evaluate a single method on AutoML Benchmark)
 - 2) improve over the manual selection of AutoGluon default models

- Precomputed evaluations and results on:

- 200 datasets from regression, classification, multi-class (thanks OpenML 😊)
 - 200 random configurations of models used in AutoGluon (CatBoost, MLP, LightGBM, RandomForest, ...) on all datasets with 3 seeds

- Performance metrics (latency, accuracy, ...) **and predictions** available for every dataset, model, seed

TabRepo

TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications

- Goals:

- 1) reduce cost of evaluation (40K CPU hours to evaluate a single method on AutoML Benchmark)

- 2) improve over the manual selection of AutoGluon default models

- Precomputed evaluations and results on:

- 200 datasets from regression, classification, multi-class (thanks OpenML 😊)

- 200 random configurations of models used in AutoGluon (CatBoost, MLP, LightGBM, RandomForest, ...) on all datasets with 3 seeds

- Performance metrics (latency, accuracy, ...) **and predictions** available for every dataset, model, seed

- ~100GB of data, ~200K CPU hours of compute

TabRepo

TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications

- Goals:

- 1) reduce cost of evaluation (40K CPU hours to evaluate a single method on AutoML Benchmark)

- 2) improve over the manual selection of AutoGluon default models

- Precomputed evaluations and results on:

- 200 datasets from regression, classification, multi-class (thanks OpenML 😊)

- 200 random configurations of models used in AutoGluon (CatBoost, MLP, LightGBM, RandomForest, ...) on all datasets with 3 seeds

- Performance metrics (latency, accuracy, ...) **and predictions** available for every dataset, model, seed

- ~100GB of data, ~200K CPU hours of compute

Storing predictions and target labels allows to obtain the performance of **any ensemble** on the fly!

TabRepo

TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications

- Goals:

- 1) reduce cost of evaluation (40K CPU hours to evaluate a single method on AutoML Benchmark)

- 2) improve over the manual selection of AutoGluon default models

- Precomputed evaluations and results on:

- 200 datasets from regression, classification, multi-class (thanks OpenML 😊)

- 200 random configurations of models used in AutoGluon (CatBoost, MLP, LightGBM, RandomForest, ...) on all datasets with 3 seeds

- Performance metrics (latency, accuracy, ...) **and predictions** available for every dataset, model, seed

- ~100GB of data, ~200K CPU hours of compute

Storing predictions and target labels allows to obtain the performance of **any ensemble** on the fly!

The dataset combined with **portfolio learning** allows to outperform Autogluon!

TabRepo

Studying the effect of HPO and ensembling

TabRepo

Studying the effect of HPO and ensembling

Storing predictions and target labels allows to obtain the performance of **any ensemble** on the fly!

TabRepo

Studying the effect of HPO and ensembling

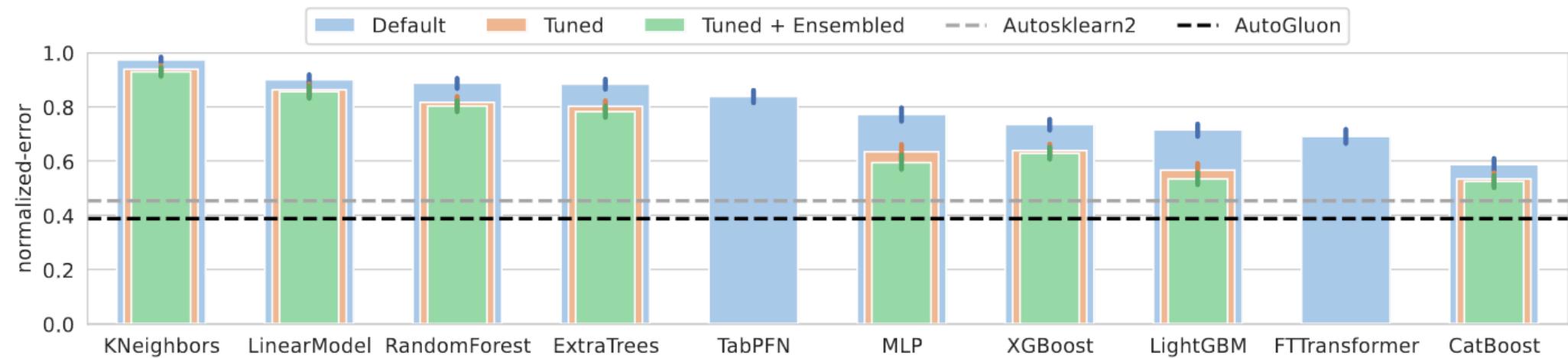


Figure 2: Normalized error for all model families when using default hyperparameters, tuned hyperparameters, and ensembling after tuning. All methods are run with a 4h budget.

Storing predictions and target labels allows to obtain the performance of **any ensemble** on the fly!

TabRepo

Studying the effect of HPO and ensembling

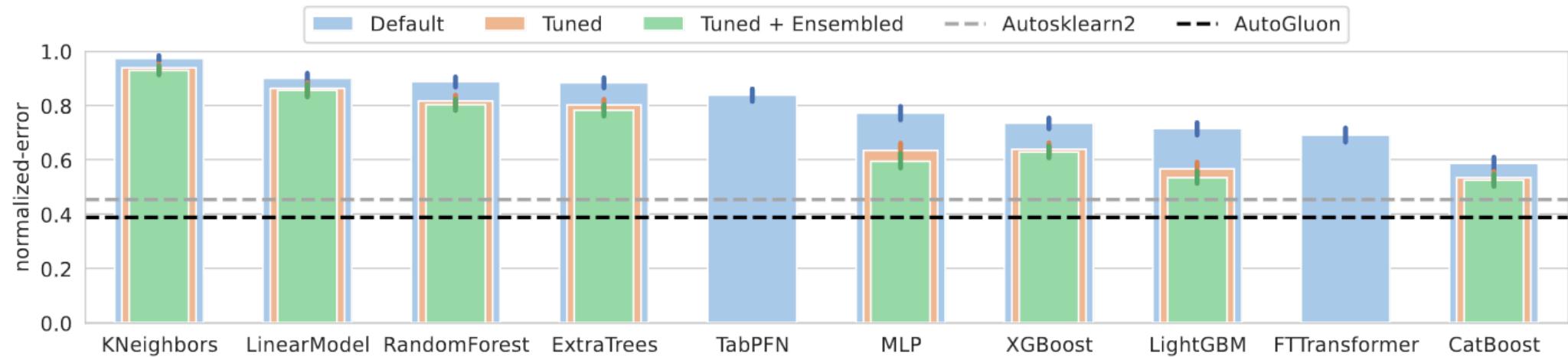


Figure 2: Normalized error for all model families when using default hyperparameters, tuned hyperparameters, and ensembling after tuning. All methods are run with a 4h budget.

Storing predictions and target labels allows to obtain the performance of **any ensemble** on the fly!

Doing this analysis just costs a few minutes on a laptop (as opposed to days on a cluster!)

TabRepo

Studying the effect of HPO and ensembling

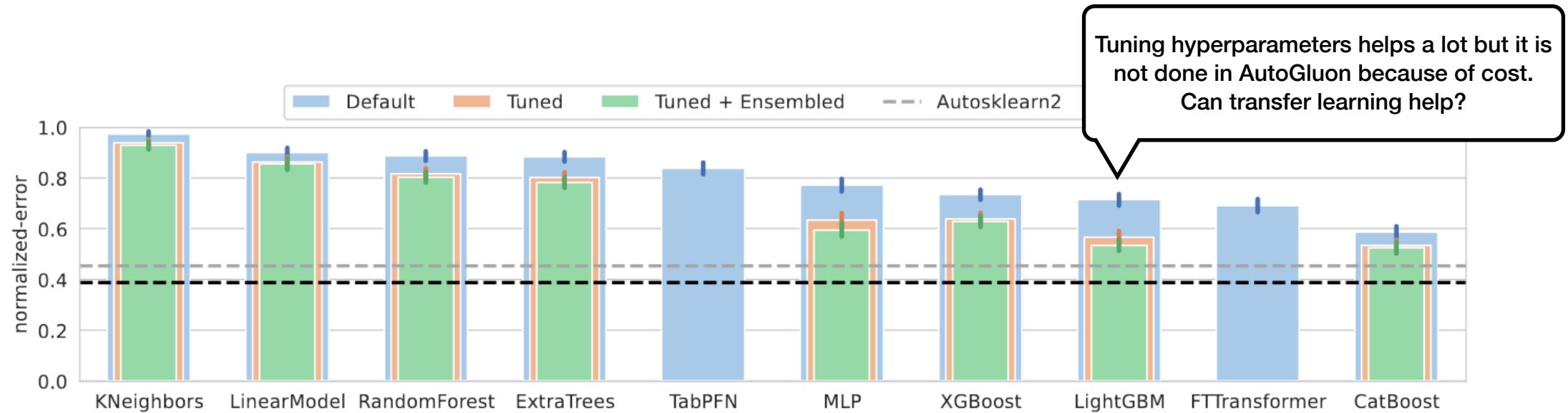


Figure 2: Normalized error for all model families when using default hyperparameters, tuned hyperparameters, and ensembling after tuning. All methods are run with a 4h budget.

Storing predictions and target labels allows to obtain the performance of **any ensemble** on the fly!

Doing this analysis just costs a few minutes on a laptop (as opposed to days on a cluster!)

Portfolio learning

Portfolio learning

- Assume we have access to error metrics of n datasets on m models, denoted as $\varepsilon \in \mathbb{R}^{n \times m}$

Portfolio learning

- Assume we have access to error metrics of n datasets on m models, denoted as $\varepsilon \in \mathbb{R}^{n \times m}$
- How can we select the best set of k default models for an average dataset?

Portfolio learning

- Assume we have access to error metrics of n datasets on m models, denoted as $\varepsilon \in \mathbb{R}^{n \times m}$
- How can we select the best set of k default models for an average dataset?
- Solve the optimization problem:

Portfolio learning

- Assume we have access to error metrics of n datasets on m models, denoted as $\varepsilon \in \mathbb{R}^{n \times m}$
- How can we select the best set of k default models for an average dataset?
- Solve the optimization problem:

$$(j_1, \dots, j_k) = \operatorname{argmin}_{(j_1, \dots, j_k) \in [m]^k} \frac{1}{n} \sum_{i=1}^n \min(\varepsilon_{ij_1}, \dots, \varepsilon_{ij_k})$$

Portfolio learning

- Assume we have access to error metrics of n datasets on m models, denoted as $\varepsilon \in \mathbb{R}^{n \times m}$
- How can we select the best set of k default models for an average dataset?
- Solve the optimization problem:

Select among all possible sets of k models

$$(j_1, \dots, j_k) = \operatorname{argmin}_{(j_1, \dots, j_k) \in [m]^k} \frac{1}{n} \sum_{i=1}^n \min(\varepsilon_{ij_1}, \dots, \varepsilon_{ij_k})$$

Portfolio learning

- Assume we have access to error metrics of n datasets on m models, denoted as $\varepsilon \in \mathbb{R}^{n \times m}$
- How can we select the best set of k default models for an average dataset?
- Solve the optimization problem:

Select among all possible sets of k models

With best avg. performance
across datasets ...

$$(j_1, \dots, j_k) = \operatorname{argmin}_{(j_1, \dots, j_k) \in [m]^k} \frac{1}{n} \sum_{i=1}^n \min(\varepsilon_{ij_1}, \dots, \varepsilon_{ij_k})$$

Portfolio learning

- Assume we have access to error metrics of n datasets on m models, denoted as $\varepsilon \in \mathbb{R}^{n \times m}$
- How can we select the best set of k default models for an average dataset?
- Solve the optimization problem:

Select among all possible sets of k models

With best avg. performance
across datasets ...

... when using the
best performing model
on a given dataset

$$(j_1, \dots, j_k) = \operatorname{argmin}_{(j_1, \dots, j_k) \in [m]^k} \frac{1}{n} \sum_{i=1}^n \min(\varepsilon_{ij_1}, \dots, \varepsilon_{ij_k})$$

Portfolio learning

- Assume we have access to error metrics of n datasets on m models, denoted as $\varepsilon \in \mathbb{R}^{n \times m}$
- How can we select the best set of k default models for an average dataset?
- Solve the optimization problem:

Select among all possible sets of k models

With best avg. performance
across datasets ...

... when using the
best performing model
on a given dataset

$$(j_1, \dots, j_k) = \operatorname{argmin}_{(j_1, \dots, j_k) \in [m]^k} \frac{1}{n} \sum_{i=1}^n \min(\varepsilon_{ij_1}, \dots, \varepsilon_{ij_k})$$

- NP-hard [Feurer 2022], but admits an approximation

Portfolio learning

- Assume we have access to error metrics of n datasets on m models, denoted as $\varepsilon \in \mathbb{R}^{n \times m}$
- How can we select the best set of k default models for an average dataset?
- Solve the optimization problem:

Select among all possible sets of k models

With best avg. performance
across datasets ...

... when using the
best performing model
on a given dataset

$$(j_1, \dots, j_k) = \operatorname{argmin}_{(j_1, \dots, j_k) \in [m]^k} \frac{1}{n} \sum_{i=1}^n \min(\varepsilon_{ij_1}, \dots, \varepsilon_{ij_k})$$

- NP-hard [Feurer 2022], but admits an approximation
- Greedy algorithm:

Portfolio learning

- Assume we have access to error metrics of n datasets on m models, denoted as $\varepsilon \in \mathbb{R}^{n \times m}$
- How can we select the best set of k default models for an average dataset?
- Solve the optimization problem:

Select among all possible sets of k models

With best avg. performance across datasets ...

... when using the best performing model on a given dataset

$$(j_1, \dots, j_k) = \operatorname{argmin}_{(j_1, \dots, j_k) \in [m]^k} \frac{1}{n} \sum_{i=1}^n \min(\varepsilon_{ij_1}, \dots, \varepsilon_{ij_k})$$

- NP-hard [Feurer 2022], but admits an approximation
- Greedy algorithm:

$$j_1 = \operatorname{argmin}_{j_1 \in [m]} \frac{1}{n} \sum_{i=1}^n \varepsilon_{ij_1}, \quad j_n = \operatorname{argmin}_{j_n \in [m]} \frac{1}{n} \sum_{i=1}^n \min(\varepsilon_{ij_1}, \dots, \varepsilon_{ij_n})$$

Portfolio learning

- Assume we have access to error metrics of n datasets on m models, denoted as $\varepsilon \in \mathbb{R}^{n \times m}$
- How can we select the best set of k default models for an average dataset?
- Solve the optimization problem:

Select among all possible sets of k models

With best avg. performance
across datasets ...

... when using the
best performing model
on a given dataset

$$(j_1, \dots, j_k) = \operatorname{argmin}_{(j_1, \dots, j_k) \in [m]^k} \frac{1}{n} \sum_{i=1}^n \min(\varepsilon_{ij_1}, \dots, \varepsilon_{ij_k})$$

- NP-hard [Feurer 2022], but admits an approximation
- Greedy algorithm:

$$j_1 = \operatorname{argmin}_{j_1 \in [m]} \frac{1}{n} \sum_{i=1}^n \varepsilon_{ij_1},$$

$$j_n = \operatorname{argmin}_{j_n \in [m]} \frac{1}{n} \sum_{i=1}^n \min(\varepsilon_{ij_1}, \dots, \varepsilon_{ij_n})$$

Pick the model performing best on average

Portfolio learning

- Assume we have access to error metrics of n datasets on m models, denoted as $\varepsilon \in \mathbb{R}^{n \times m}$
- How can we select the best set of k default models for an average dataset?
- Solve the optimization problem:

Select among all possible sets of k models

With best avg. performance across datasets ...

... when using the best performing model on a given dataset

$$(j_1, \dots, j_k) = \operatorname{argmin}_{(j_1, \dots, j_k) \in [m]^k} \frac{1}{n} \sum_{i=1}^n \min(\varepsilon_{ij_1}, \dots, \varepsilon_{ij_k})$$

- NP-hard [Feurer 2022], but admits an approximation
- Greedy algorithm:

$$j_1 = \operatorname{argmin}_{j_1 \in [m]} \frac{1}{n} \sum_{i=1}^n \varepsilon_{ij_1}, \quad j_n = \operatorname{argmin}_{j_n \in [m]} \frac{1}{n} \sum_{i=1}^n \min(\varepsilon_{ij_1}, \dots, \varepsilon_{ij_n})$$

Pick the model performing best on average

Pick the model performing best on average when combined with the ones previously selected

Portfolio learning

- Assume we have access to error metrics of n datasets on m models, denoted as $\varepsilon \in \mathbb{R}^{n \times m}$
- How can we select the best set of k default models for an average dataset?

- Solve the optimization problem:

Select among all possible sets of k models

$$(j_1, \dots, j_k) = \operatorname{argmin}_{(j_1, \dots, j_k) \in [m]^k} \frac{1}{n} \sum_{i=1}^n \min(\varepsilon_{ij_1}, \dots, \varepsilon_{ij_k})$$

With best avg. performance across datasets ...

... when using the best performing model on a given dataset

- NP-hard [Feurer 2022], but admits an approximation
- Greedy algorithm:

$$j_1 = \operatorname{argmin}_{j_1 \in [m]} \frac{1}{n} \sum_{i=1}^n \varepsilon_{ij_1}, \quad j_n = \operatorname{argmin}_{j_n \in [m]} \frac{1}{n} \sum_{i=1}^n \min(\varepsilon_{ij_1}, \dots, \varepsilon_{ij_n})$$

Pick the model performing best on average

Pick the model performing best on average when combined with the ones previously selected

Benefits :

- Approximation guarantees from the original (sub-modular) problem
- Tractable
- Works extremely well in practice

Portfolio learning

- Assume we have access to error metrics of n datasets on m models, denoted as $\varepsilon \in \mathbb{R}^{n \times m}$
- How can we select the best set of k default models for an average dataset?
- Solve the optimization problem:

Select among all possible sets of k models

$$(j_1, \dots, j_k) = \operatorname{argmin}_{(j_1, \dots, j_k) \in [m]^k} \frac{1}{n} \sum_{i=1}^n \min(\varepsilon_{ij_1}, \dots, \varepsilon_{ij_k})$$

With best avg. performance across datasets ...

... when using the best performing model on a given dataset

- NP-hard [Feurer 2022], but admits an approximation
- Greedy algorithm:

$$j_1 = \operatorname{argmin}_{j_1 \in [m]} \frac{1}{n} \sum_{i=1}^n \varepsilon_{ij_1}, \quad j_n = \operatorname{argmin}_{j_n \in [m]} \frac{1}{n} \sum_{i=1}^n \min(\varepsilon_{ij_1}, \dots, \varepsilon_{ij_n})$$

Pick the model performing best on average

Pick the model performing best on average when combined with the ones previously selected

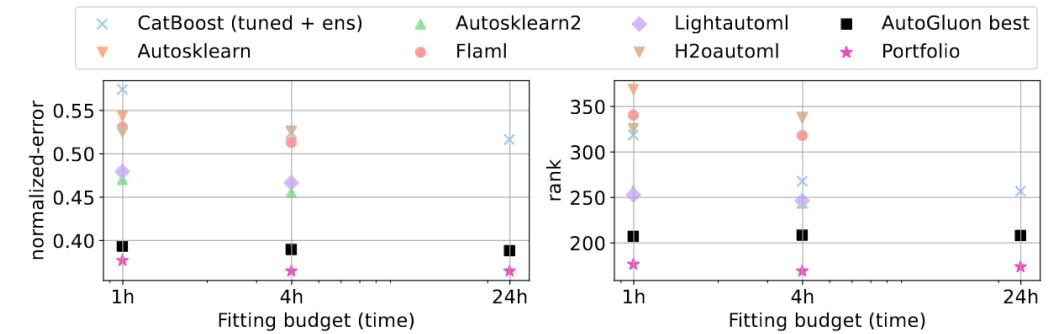
Benefits :

- Approximation guarantees from the original (sub-modular) problem
- Tractable
- Works extremely well in practice

Disadvantage : needs a grid or a surrogate

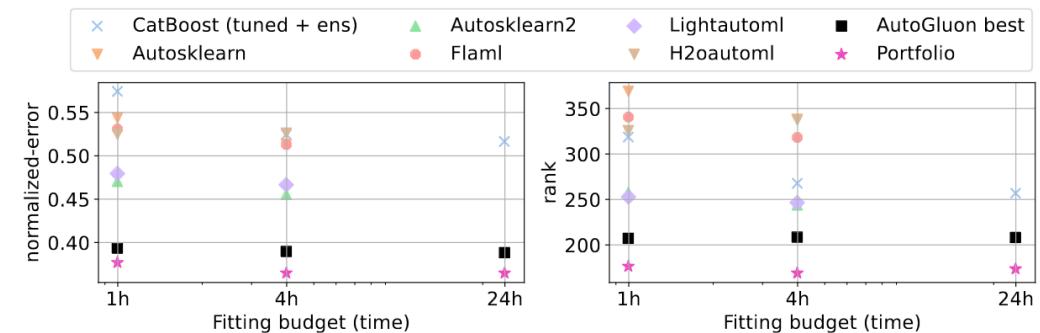
Results

Results



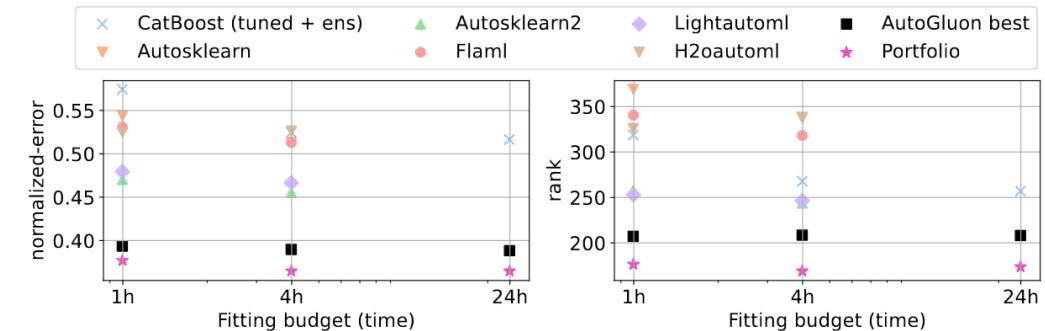
Results

- Just fitting portfolio configuration on evaluations of TabRepo outperforms all SOTA AutoML methods studied



Results

- Just fitting portfolio configuration on evaluations of TabRepo outperforms all SOTA AutoML methods studied
- We can analyse the performance of various components: #ensemble, #configurations, #datasets



Results

- Just fitting portfolio configuration on evaluations of TabRepo outperforms all SOTA AutoML methods studied
- We can analyse the performance of various components: #ensemble, #configurations, #datasets

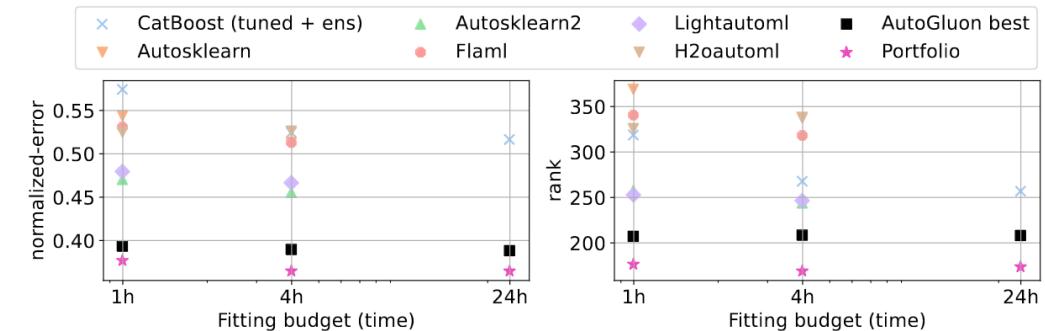
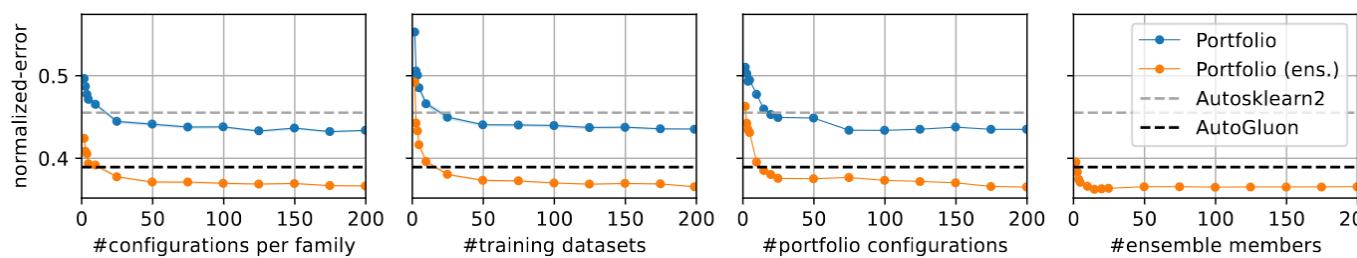


Figure 4: Impact on normalized error when varying the (a) number of configurations per family, (b) number of training datasets, (c) portfolio size and (d) number of ensemble members.

Results

- Just fitting portfolio configuration on evaluations of TabRepo outperforms all SOTA AutoML methods studied
- We can analyse the performance of various components: #ensemble, #configurations, #datasets
- Portfolio configurations has replaced the manually configured defaults and improved significantly AutoGluon

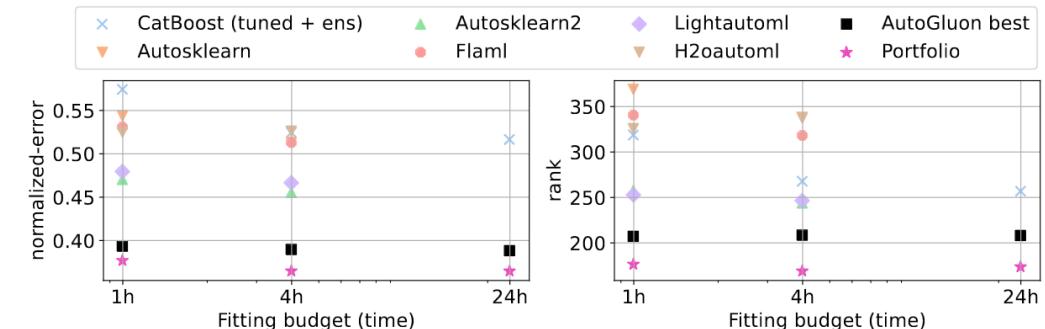
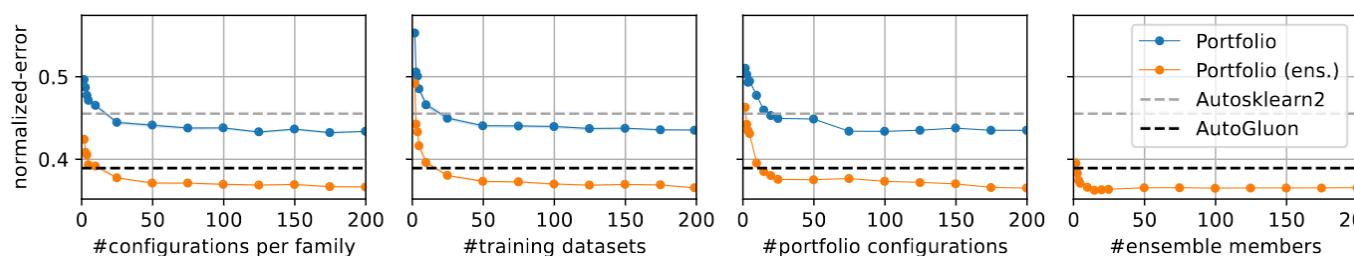


Figure 4: Impact on normalized error when varying the (a) number of configurations per family, (b) number of training datasets, (c) portfolio size and (d) number of ensemble members.

Results

- Just fitting portfolio configuration on evaluations of TabRepo outperforms all SOTA AutoML methods studied
- We can analyse the performance of various components: #ensemble, #configurations, #datasets
- Portfolio configurations has replaced the manually configured defaults and improved significantly AutoGluon

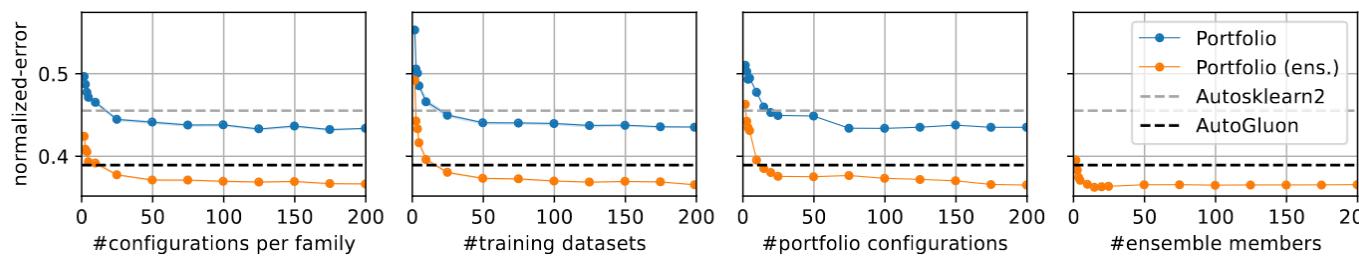


Figure 4: Impact on normalized error when varying the (a) number of configurations per family, (b) number of training datasets, (c) portfolio size and (d) number of ensemble members.

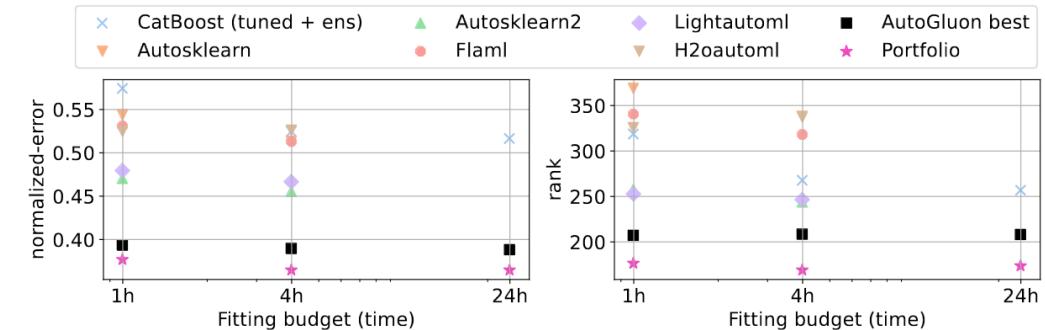


Table 2: Performance of AutoGluon combined with portfolios on AMLB.

method	win-rate	loss reduc.
AG + Portfolio (ours)	-	0%
AG	67%	2.8%
MLJAR	81%	22.5%
lightautoml	83%	11.7%
GAMA	86%	15.5%
FLAML	87%	16.3%
autosklearn	89%	11.8%
H2OAutoML	92%	10.3%
CatBoost	94%	18.1%
TunedRandomForest	94%	22.9%
RandomForest	97%	25.0%
XGBoost	98%	20.9%
LightGBM	98%	23.6%

Results

- Just fitting portfolio configuration on evaluations of TabRepo outperforms all SOTA AutoML methods studied
- We can analyse the performance of various components: #ensemble, #configurations, #datasets
- Portfolio configurations has replaced the manually configured defaults and improved significantly AutoGluon

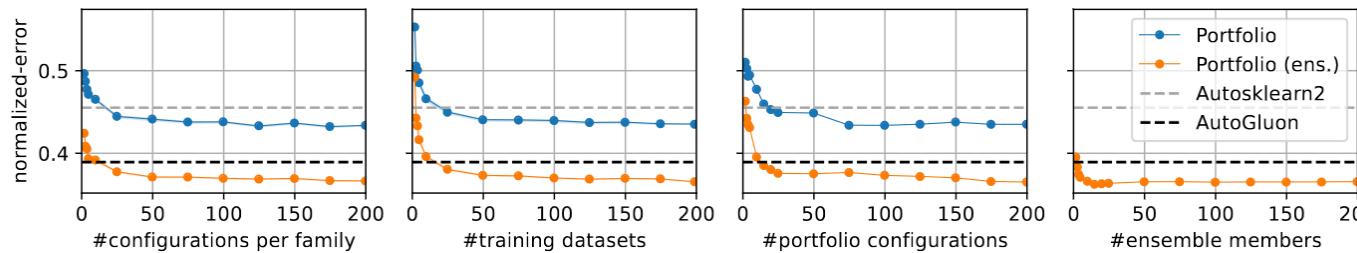


Figure 4: Impact on normalized error when varying the (a) number of configurations per family, (b) number of training datasets, (c) portfolio size and (d) number of ensemble members.

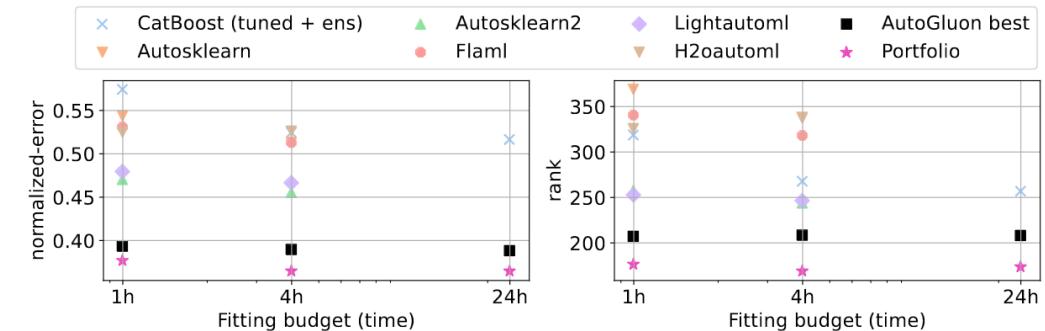


Table 2: Performance of AutoGluon combined with portfolios on AMLB.

method	win-rate	loss reduc.
AG + Portfolio (ours)	-	0%
AG	67%	2.8%
MLJAR	81%	22.5%
lightautoml	83%	11.7%
GAMA	86%	15.5%
FLAML	87%	16.3%
autosklearn	89%	11.8%
H2OAutoML	92%	10.3%
CatBoost	94%	18.1%
TunedRandomForest	94%	22.9%
RandomForest	97%	25.0%
XGBoost	98%	20.9%
LightGBM	98%	23.6%

Results

Results

- 😊 All those experiments (fitting portfolio and evaluating) can be done using TabRepo for a very small cost (e.g. many table lookups)

Results

- 😊 All those experiments (fitting portfolio and evaluating) can be done using TabRepo for a very small cost (e.g. many table lookups)
- Possible research ideas:

Results

- 😊 All those experiments (fitting portfolio and evaluating) can be done using TabRepo for a very small cost (e.g. many table lookups)
- Possible research ideas:
 - Find best tabular configurations given time budget

Results

- 😊 All those experiments (fitting portfolio and evaluating) can be done using TabRepo for a very small cost (e.g. many table lookups)
- Possible research ideas:
 - Find best tabular configurations given time budget
 - Apply different meta-heuristics to optimise the learned default portfolio list of configurations on a new dataset

Results

- 😊 All those experiments (fitting portfolio and evaluating) can be done using TabRepo for a very small cost (e.g. many table lookups)
- Possible research ideas:
 - Find best tabular configurations given time budget
 - Apply different meta-heuristics to optimise the learned default portfolio list of configurations on a new dataset
 - Multiobjective optimization taking latency into account...

Results

- 😊 All those experiments (fitting portfolio and evaluating) can be done using TabRepo for a very small cost (e.g. many table lookups)
- Possible research ideas:
 - Find best tabular configurations given time budget
 - Apply different meta-heuristics to optimise the learned default portfolio list of configurations on a new dataset
 - Multiobjective optimization taking latency into account...
 - All those experiments can be done... with your laptop!!

Results

- 😊 All those experiments (fitting portfolio and evaluating) can be done using TabRepo for a very small cost (e.g. many table lookups)
- Possible research ideas:
 - Find best tabular configurations given time budget
 - Apply different meta-heuristics to optimise the learned default portfolio list of configurations on a new dataset
 - Multiobjective optimization taking latency into account...
 - All those experiments can be done... with your laptop!!
- 💻 <https://github.com/autogluon/tabrepo>

Results

- 😊 All those experiments (fitting portfolio and evaluating) can be done using TabRepo for a very small cost (e.g. many table lookups)
- Possible research ideas:
 - Find best tabular configurations given time budget
 - Apply different meta-heuristics to optimise the learned default portfolio list of configurations on a new dataset
 - Multiobjective optimization taking latency into account...
 - All those experiments can be done... with your laptop!!
- 💻 <https://github.com/autogluon/tabrepo>
- Quick demo

Limitations

Limitations

- Easy to rerun paper analysis but hard to compare your own method

Limitations

- Easy to rerun paper analysis but hard to compare your own method
- Large collections of datasets (216) but mostly grabbed everything we could

Limitations

- Easy to rerun paper analysis but hard to compare your own method
- Large collections of datasets (216) but mostly grabbed everything we could
- No good control on quality, duplication, domain

Limitations

- Easy to rerun paper analysis but hard to compare your own method
- Large collections of datasets (216) but mostly grabbed everything we could
- No good control on quality, duplication, domain
- Only TabPFN-v1 as In Context Learning (**ICL**) method

Any questions?

Paper: <https://arxiv.org/pdf/2311.02971>

Code: <https://github.com/autogluon/tabrepo>

David Salinas

Nick Erickson

Part II

TabArena: A Living Benchmark for Machine Learning on Tabular Data

Motivation 1: Unreliable Baselines

How to become SOTA on the highly used benchmark by McElfresh et al. (2023):

Model	Avg. Rank	Avg. norm. logloss	Avg. logloss
XGBoost	5.56	0.1	0.39
CatBoost	5.84	0.12	0.45
LightGBM	6.85	0.17	0.45
ResNet	8.12	0.22	0.49
SAINT	8.77	0.23	0.52
...			
MLP	10.79	0.39	0.96
...			
KNN	15.68	0.71	0.88

Motivation 1: Unreliable Baselines

How to become SOTA on the highly used benchmark by McElfresh et al. (2023):

Model	Avg. Rank	Avg. norm. logloss	Avg. logloss
XGBoost (ours, holdout)	4.13	0.06	0.36
XGBoost	5.56	0.1	0.39
CatBoost	5.84	0.12	0.45
MLP (ours, holdout)	6.09	0.15	0.4
LightGBM	6.85	0.17	0.45
ResNet	8.12	0.22	0.49
SAINT	8.77	0.23	0.52
...			
MLP	10.79	0.39	0.96
...			
KNN	15.68	0.71	0.88

Motivation 1: Unreliable Baselines

How to become SOTA on the highly used benchmark by McElfresh et al. (2023):

Model	Avg. Rank	Avg. norm. logloss	Avg. logloss
XGBoost (ours, holdout)	4.13	0.06	0.36
XGBoost	5.56	0.1	0.39
CatBoost	5.84	0.12	0.45
MLP (ours, holdout)	6.09	0.15	0.4
LightGBM	6.85	0.17	0.45
ResNet	8.12	0.22	0.49
SAINT	8.77	0.23	0.52
...			
MLP	10.79	0.39	0.96
...			
KNN	15.68	0.71	0.88

Accepted ICML and
NeurIPS papers (that
claim SOTA)

Motivation 1: Unreliable Baselines

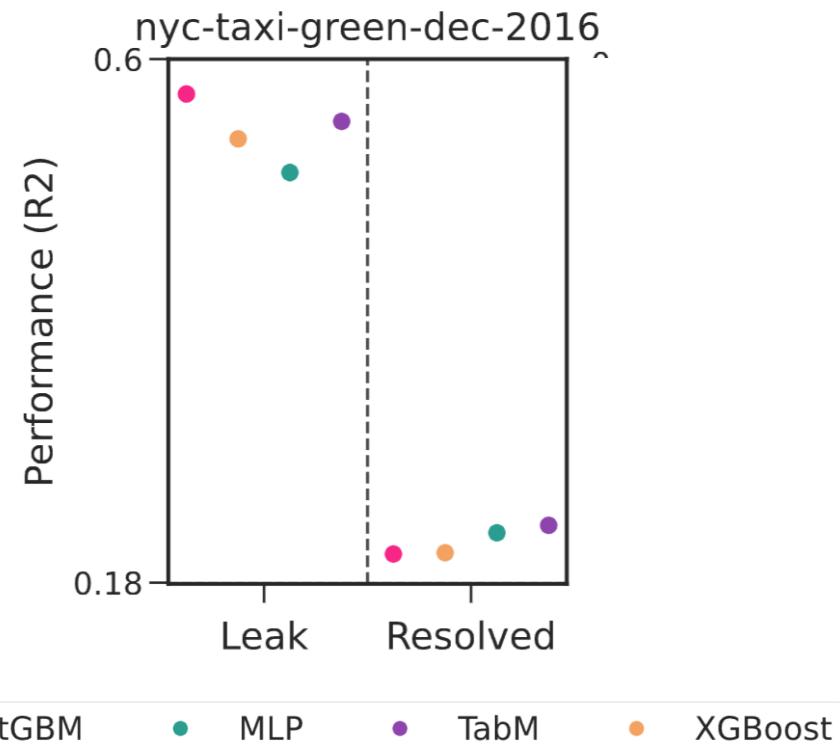
How to become SOTA on the highly used benchmark by McElfresh et al. (2023):

Model	Avg. Rank	Avg. norm. logloss	Avg. logloss
XGBoost (ours, 5CV)	1.77	0.03	0.34
MLP (ours, 5CV)	2.1	0.08	0.34
XGBoost (ours, holdout)	4.13	0.06	0.36
XGBoost	5.56	0.1	0.39
CatBoost	5.84	0.12	0.45
MLP (ours, holdout)	6.09	0.15	0.4
LightGBM	6.85	0.17	0.45
ResNet	8.12	0.22	0.49
SAINT	8.77	0.23	0.52
...			
MLP	10.79	0.39	0.96
...			
KNN	15.68	0.71	0.88

Accepted ICML and
NeurIPS papers (that
claim SOTA)

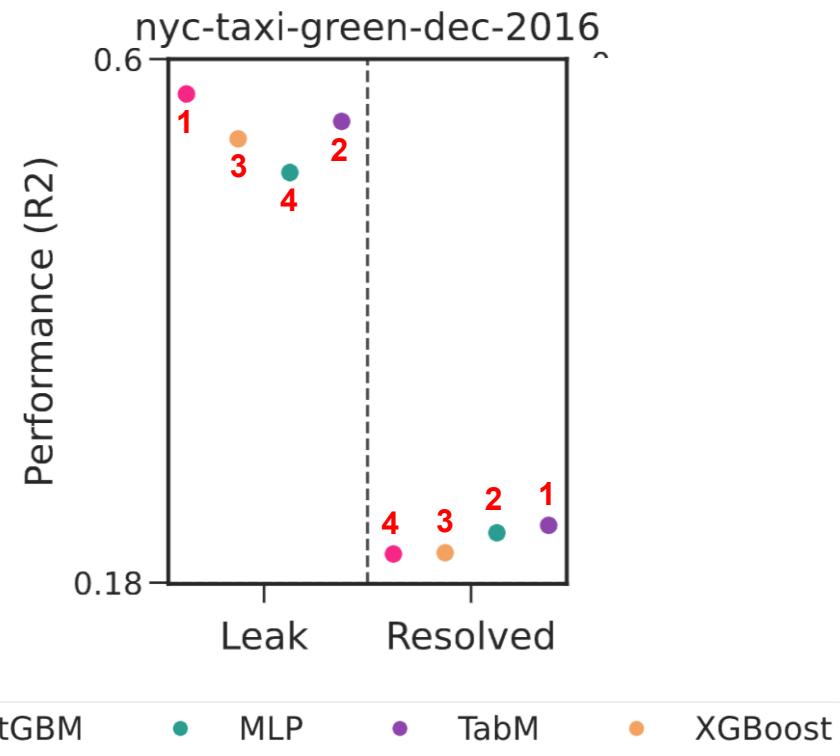
Motivation 2: Insufficient Dataset Curation

Faulty data influences the results:



Motivation 2: Insufficient Dataset Curation

Faulty data influences the results:



Motivation 3: Inappropriate Evaluation Protocols

Splits must be appropriate for the data:

Benchmark	Time-split		
	Needed	Possible	Used
Grinsztajn et al. (2022)	22	5	
Tabzilla (McElfresh et al., 2023)	12	0	
WildTab (Kolesnikov, 2023)	1	1	✗
TableShift (Gardner et al., 2023)	15	8	
Gorishniy et al. (2024)	7	1	

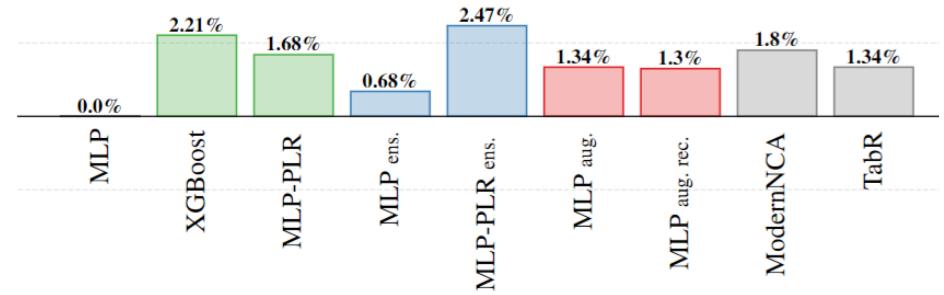
Motivation 3: Inappropriate Evaluation Protocols

Splits must be appropriate for the data:

Benchmark	Time-split		
	Needed	Possible	Used
Grinsztajn et al. (2022)	22	5	
Tabzilla (McElfresh et al., 2023)	12	0	
WildTab (Kolesnikov, 2023)	1	1	✗
TableShift (Gardner et al., 2023)	15	8	
Gorishniy et al. (2024)	7	1	

Percentage Change Over MLP

Benchmark from [Gorishniy et al. \(2024\)](#)



Rubachev, Ivan, et al. "TabReD: Analyzing Pitfalls and Filling the Gaps in Tabular Deep Learning Benchmarks." (2024)

█ Models █ Ensembles █ Training Methods █ Retrieval-Based Models

Motivation 3: Inappropriate Evaluation Protocols

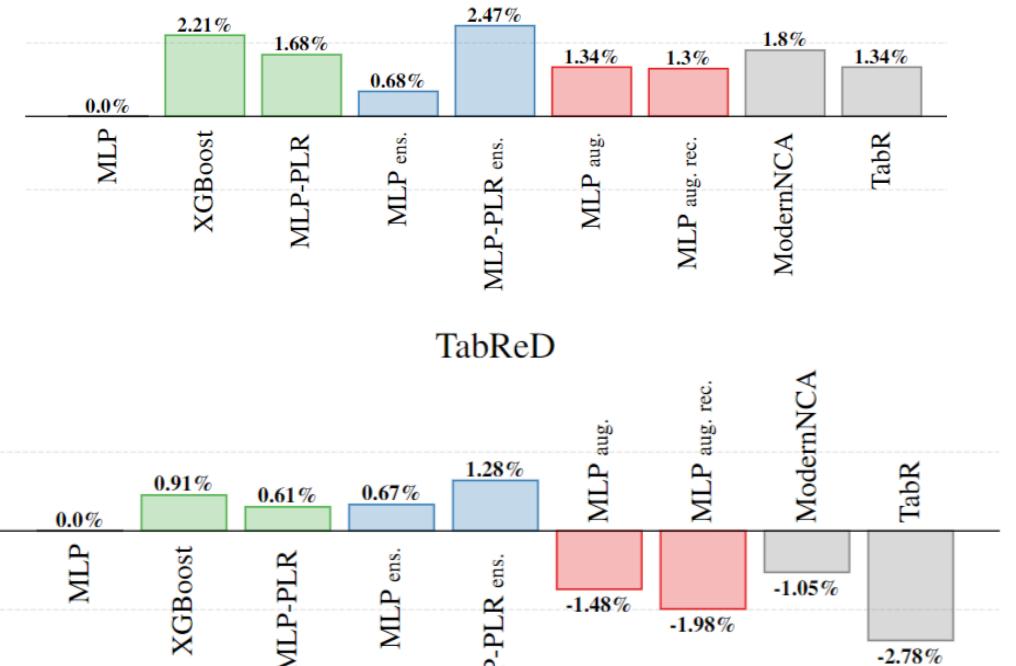
Splits must be appropriate for the data:

Benchmark	Time-split		
	Needed	Possible	Used
Grinsztajn et al. (2022)	22	5	
Tabzilla (McElfresh et al., 2023)	12	0	
WildTab (Kolesnikov, 2023)	1	1	✗
TableShift (Gardner et al., 2023)	15	8	
Gorishniy et al. (2024)	7	1	

Rubachev, Ivan, et al. "TabReD: Analyzing Pitfalls and Filling the Gaps in Tabular Deep Learning Benchmarks." (2024)

Percentage Change Over MLP

Benchmark from [Gorishniy et al. \(2024\)](#)



Legend: Models (Green), Ensembles (Blue), Training Methods (Red), Retrieval-Based Models (Grey)

Motivation Summary

(Partial) Overview of Tabular Benchmarks

Bischl et al. [28, 29]

Gorishniy et al. [30]

Shwartz-Ziv and Armon [31]

Grinsztajn et al. [32]

McElfresh et al. [33]

Fischer et al. [34]

Gijsbers et al. [35]

Kohli et al. [7]

Tschalzev et al. [8]

Holzmüller et al. [20]

Ye et al. [36]

Rubachev et al. [10]

Salinas and Erickson [37]

Motivation Summary

(Partial) Overview of Tabular Benchmarks

Bischl et al. [28, 29]

Gorishniy et al. [30]

Shwartz-Ziv and Armon [31]

Grinsztajn et al. [32]

McElfresh et al. [33]

Fischer et al. [34]

Gijsbers et al. [35]

Kohli et al. [7]

Tschalzev et al. [8]

Holzmüller et al. [20]

Ye et al. [36]

Rubachev et al. [10]

Salinas and Erickson [37]

One more benchmark should fix it!

Motivation Summary

(Partial) Overview of Tabular Benchmarks

Bischl et al. [28, 29]

Gorishniy et al. [30]

Shwartz-Ziv and Armon [31]

Grinsztajn et al. [32]

McElfresh et al. [33]

Fischer et al. [34]

Gijsbers et al. [35]

Kohli et al. [7]

Tschalzev et al. [8]

Holzmüller et al. [20]

Ye et al. [36]

Rubachev et al. [10]

Salinas and Erickson [37]

No!

One more benchmark should fix it!

Motivation Summary

(Partial) Overview of Tabular Benchmarks

Bischl et al. [28, 29]

Gorishniy et al. [30]

Shwartz-Ziv and Armon [31]

Grinsztajn et al. [32]

McElfresh et al. [33]

Fischer et al. [34]

Gijsbers et al. [35]

Kohli et al. [7]

Tschalzev et al. [8]

Holzmüller et al. [20]

Ye et al. [36]

Rubachev et al. [10]

Salinas and Erickson [37]

No!

One more benchmark should fix it!

**Benchmarks require
continuous updates!**

Background

Background

Independent and identically distributed (IID) Data

Train	Test	Train	Test
0 3 6 1 4 7 2 5 8 9	3 0 7 4 1 8 5 2 9 6	0 0 0 4 4 4 4 4 0 0	5 5 5 7 7 5 7 7 7 7

IID **Non-IID**

Background

Relevance to AutoML: *many successful AutoML systems focus on IID tabular data*

Background

Relevance to AutoML: *many successful AutoML systems focus on IID tabular data*

As we show later, TabArena enables AutoML to:

- find the best models we should integrate into AutoML systems
- simulate complex ensemble pipelines
- meta-learn model portfolios (a.k.a. zero-shot HPO)
- transfer academic work/models into usable industry pipelines

Background

Relevance to AutoML: *many successful AutoML systems focus on IID tabular data*

As we show later, TabArena enables AutoML to:

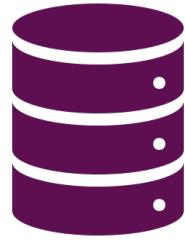
- find the best models we should integrate into AutoML systems
- simulate complex ensemble pipelines
- meta-learn model portfolios (a.k.a. zero-shot HPO)
- transfer academic work/models into usable industry pipelines

TabArena, a research platform for AutoML ✨

TabArena-v0.1

Overview

Models



Datasets

Evaluations

Overview

For representative benchmarking,
we need representative

Models

Datasets

Evaluations

and an explicit Focus to represent.

Overview

For representative benchmarking,
we need representative

Models

Datasets

Evaluations

Focus

and an explicit

to represent.

Because of no free
lunch theorem,
They *cannot* be a
benchmark for
“everything”

TabArena-v0.1

Focus

Focus Statement

Focus

We focus on:

- Tabular IID data spanning small to large data regime (500-250k samples)
- Predictive machine learning models for real-world classification and regression tasks
- Evaluating the peak performance of models

 The first **truly representative** benchmark for our focus **to guide researchers and practitioners**

Focus Statement

Focus

We focus on:

- Tabular IID data spanning small to large data regime (500-250k samples)
- Predictive machine learning models for real-world classification and regression tasks
- Evaluating the peak performance of models

🎯 The first **truly representative** benchmark for our focus **to guide researchers and practitioners**

Not our focus / future work:

- Non-IID data (temporal dependencies or distribution shifts)
- Few-shot predictions, very small data (less than 500 training samples) or very large data
- Tabular data with text and/or semantic context information
- Other tasks such as clustering, subgroup discovery or survival analysis.
- Performance trade-offs

Clarifications

Focus

Why do we focus?

- Making the implicit assumptions explicit – “**I know that I know nothing**”
- **Clear communication** with practitioners and researchers
- Clearly **motivating the curation** of data and models

Clarifications

Focus

Why do we focus?

- Making the implicit assumptions explicit – “**I know that I know nothing**”
- **Clear communication** with practitioners and researchers
- Clearly **motivating the curation** of data and models

Why do we care about ML on tabular IID data?

- **Omnipresent traditional ML task** in industry and academia
- Playground for **model development** and a key task for **AutoML systems**
- **Stepping stone for exciting new avenues** such as context-aware or non-IID modelling

Clarifications

Focus

Why only small to large data (500-250k)?

- Among the **most common data**
- Smaller or larger necessitates **unique pipelines, models, and evaluation protocols**

Clarifications

Focus

Why only small to large data (500-250k)?

- Among the **most common data**
- Smaller or larger necessitates **unique pipelines, models, and evaluation protocols**

Why peak performance (and not trade-offs)?

- Most **models can be made much more efficient** if their performance is worth it
- **Trade-offs require user constraints** (per-dataset)
 - We already assume a limit of 1 hour!
- **Efficiency of the ensemble is relevant**, not the individual model
 - We can simulate and research this with TabArena!

Focus

TabArena-v0.1

Models

Why are models hard to get right?

Models

Search Space Problems:

CatBoost

learning_rate	$\log \mathcal{U}(e^{-5}, 1)$
random_strength	$\mathcal{U}\{1, 2, \dots, 20\}$
l2_leaf_reg	$\log \mathcal{U}(1, 10)$
bagging_temperature	$\mathcal{U}(0.0, 1.0)$
leaf_estimation_iterations	$\mathcal{U}\{1, 2, \dots, 20\}$
iterations	$\mathcal{U}\{100, 101, \dots, 4000\}$

Hollmann, Noah, et al. "Accurate predictions on small data with a tabular foundation model." (2025)

- Copied/summarized from prior work
- Disconnected from the pipeline and evaluation protocol

Models

Why are models hard to get right?

Search Space Problems:

	CatBoost
learning_rate	$\log \mathcal{U}(e^{-5}, 1)$
random_strength	$\mathcal{U}\{1, 2, \dots, 20\}$
l2_leaf_reg	$\log \mathcal{U}(1, 10)$
bagging_temperature	$\mathcal{U}(0.0, 1.0)$
leaf_estimation_iterations	$\mathcal{U}\{1, 2, \dots, 20\}$
iterations	$\mathcal{U}\{100, 101, \dots, 4000\}$

Hollmann, Noah, et al. "Accurate predictions on small data with a tabular foundation model." (2025)

- Copied/summarized from prior work
- Disconnected from the pipeline and evaluation protocol

Implementation Problems:

- No pip package, undefined dependencies
- Untested research code
- Custom pipeline per model (with custom bugs)
- Insufficient data or know-how for model choices
- Ignorance of target metric or user constraints

Models

1. **SOTA** tree-based, neural networks, and foundation **models**.
2. Implemented **with authors**
3. Good, **optimized** search spaces

Models, Hyperparameters, and Tuning

Model	Short Name	Search Space	Type
Random Forests [12]	RandomForest	Prior Work + Us	
Extremely Randomized Trees [13]	ExtraTrees	Prior Work + Us	
XGBoost [14]	XGBoost	Prior Work + Us	
LightGBM [15]	LightGBM	Prior Work + Us	
CatBoost [16]	CatBoost	Prior Work + Us	
Explainable Boosting Machine [17, 18]	EBM	Authors	
FastAI MLP [19]	FastaiMLP	Authors	
Torch MLP [19]	TorchMLP	Authors	
RealMLP [20]	RealMLP	Authors	
TabM [†] _{mini} [9]	TabM	Authors	
ModernNCA [21]	ModernNCA	Authors	
TabPFNv2 [5]	TabPFNv2	Authors	
TabICL [22]	TabICL	-	
TabDPT [23]	TabDPT	-	
Linear / Logistic Regression	Linear	TabRepo	
K-Nearest Neighbors	KNN	TabRepo	

tree-based () , neural network () , pretrained foundation models () , and baseline ()

Models, Hyperparameters, and Tuning

Models

Benchmark	#splits inner
Bischl et al. [28, 29]	1
Gorishniy et al. [30]	1
Shwartz-Ziv and Armon [31]	1
Grinsztajn et al. [32]	1
McElfresh et al. [33]	1
Fischer et al. [34]	{1, 3, 10}
Gijsbers et al. [35]	-
Kohli et al. [7]	1
Tschalzev et al. [8]	10
Holzmüller et al. [20]	1
Ye et al. [36]	1
Rubachev et al. [10]	1
Salinas and Erickson [37]	8
TabArena (Ours)	8

Peak Performance by:

- Proper (inner) **cross-validation to avoid overfitting**

Models, Hyperparameters, and Tuning

Models

Benchmark	#splits	inner	Ensembling
Bischl et al. [28, 29]	1		✗
Gorishniy et al. [30]	1		(✓)
Shwartz-Ziv and Armon [31]	1		(✓)
Grinsztajn et al. [32]	1		✗
McElfresh et al. [33]	1		✗
Fischer et al. [34]	{1, 3, 10}		✗
Gijsbers et al. [35]	-		(✓)
Kohli et al. [7]	1		✗
Tschalzev et al. [8]	10		(✓)
Holzmüller et al. [20]	1		(✓)
Ye et al. [36]	1		✗
Rubachev et al. [10]	1		(✓)
Salinas and Erickson [37]	8		✓
TabArena (Ours)	8		✓

Peak Performance by:

- Proper (inner) **cross-validation to avoid overfitting**
- Model-wise **post-hoc ensembling** (Caruana et al.)

Models, Hyperparameters, and Tuning

Models

Benchmark	#splits	inner	Ensembling	HPO Limit	
				#confs.	#hours
Bischl et al. [28, 29]	1		✗	1	-
Gorishniy et al. [30]	1		✓	100	6
Shwartz-Ziv and Armon [31]	1		✓	1000	-
Grinsztajn et al. [32]	1		✗	400	-
McElfresh et al. [33]	1		✗	30	10
Fischer et al. [34]	{1, 3, 10}		✗	{-, 500}	-
Gijsbers et al. [35]	-		✓	-	4
Kohli et al. [7]	1		✗	100	{3, -}
Tschalzev et al. [8]	10		✓	100	-
Holzmüller et al. [20]	1		✓	50	-
Ye et al. [36]	1		✗	100	-
Rubachev et al. [10]	1		✓	100	-
Salinas and Erickson [37]	8		✓	200	200
TabArena (Ours)	8		✓	200	200

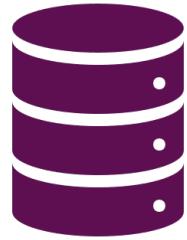
Peak Performance by:

- Proper (inner) **cross-validation to avoid overfitting**
- Model-wise **post-hoc ensembling** (Caruana et al.)
- **Extensive HPO** (200 configs, 1 hour per config)

Focus

Models

TabArena-v0.1



Datasets

Datasets Curation

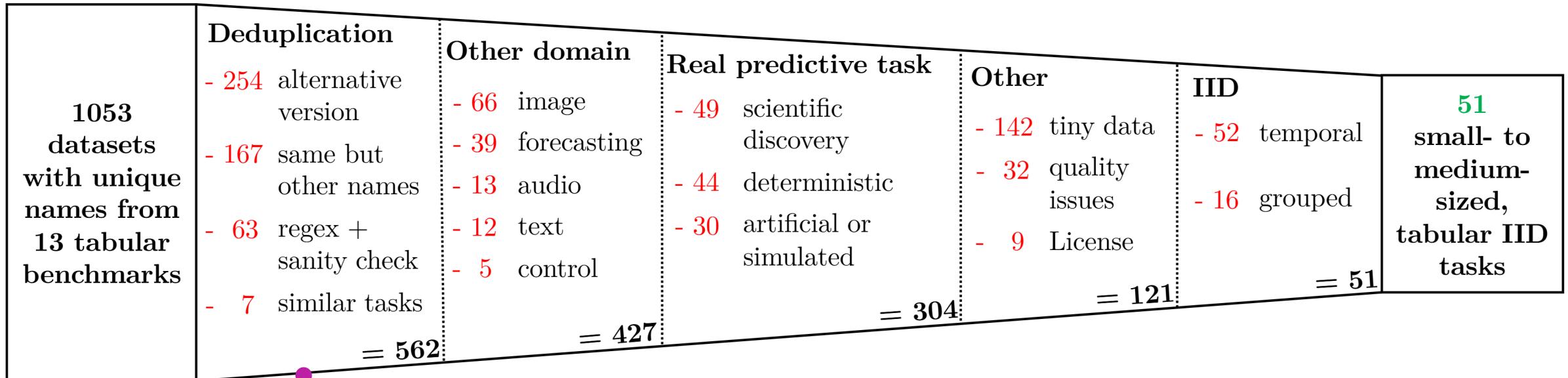
Datasets

1053 datasets with unique names from 13 tabular benchmarks	Deduplication <ul style="list-style-type: none">- 254 alternative version- 167 same but other names- 63 regex + sanity check- 7 similar tasks $= 562$	Other domain <ul style="list-style-type: none">- 66 image- 39 forecasting- 13 audio- 12 text- 5 control $= 427$	Real predictive task <ul style="list-style-type: none">- 49 scientific discovery- 44 deterministic- 30 artificial or simulated $= 304$	Other <ul style="list-style-type: none">- 142 tiny data- 32 quality issues- 9 License $= 121$	IID <ul style="list-style-type: none">- 52 temporal- 16 grouped $= 51$	51 small- to medium- sized, tabular IID tasks
--	---	--	---	--	--	---

Results of our *manual* curation: **51 out of 1053**

Datasets Curation

Datasets



Unique datasets

- Many surprising duplicates (e.g., AutoML competition datasets)
- Very similar tasks (e.g., 5 datasets from one paper, same features different targets)

Datasets Curation

Datasets

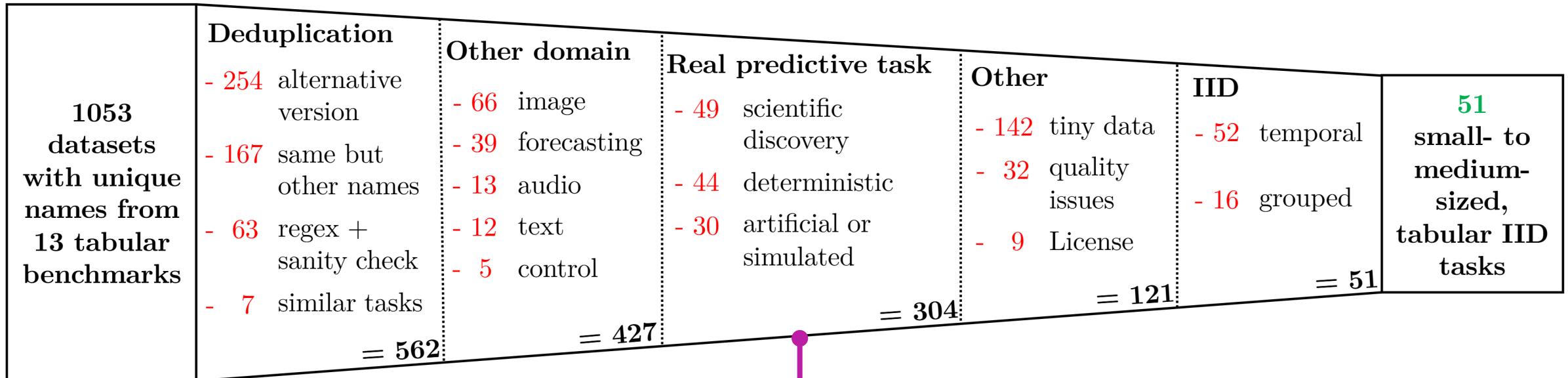
1053 datasets with unique names from 13 tabular benchmarks	Deduplication - 254 alternative version - 167 same but other names - 63 regex + sanity check - 7 similar tasks $= 562$	Other domain - 66 image - 39 forecasting - 13 audio - 12 text - 5 control $= 427$	Real predictive task - 49 scientific discovery - 44 deterministic - 30 artificial or simulated $= 304$	Other - 142 tiny data - 32 quality issues - 9 License $= 121$	IID - 52 temporal - 16 grouped $= 51$	51 small- to medium-sized, tabular IID tasks
--	--	--	---	--	---	--

Tabular Domain Task

- Many datasets that treat images as tables (often very outdated)
- Often, only the original source described the data

Datasets Curation

Datasets

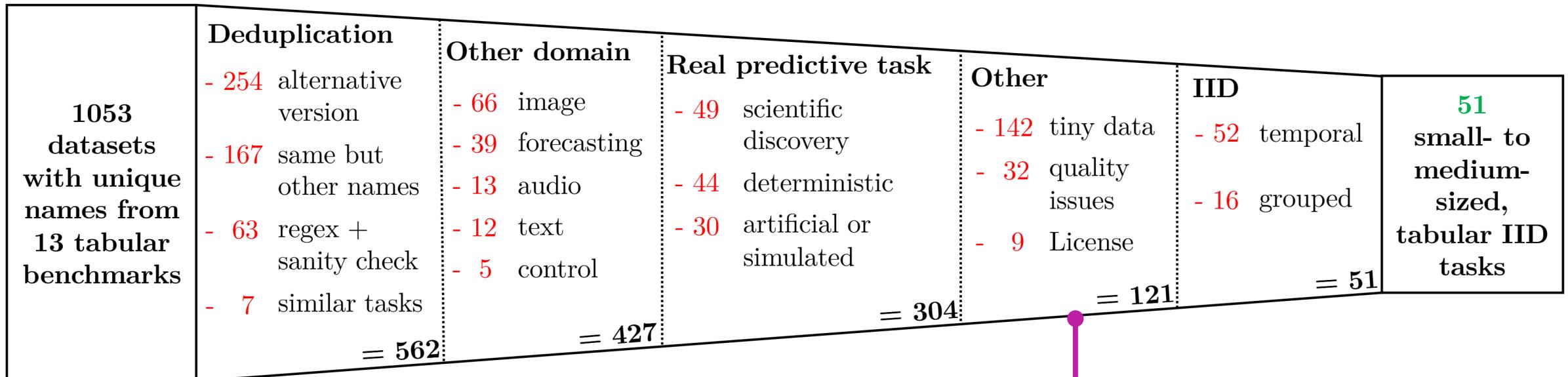


Predictive ML Task

- Scientific discovery (why/how questions) vs. predictive task
- Real-world data: not deterministic, not artificial, not simulated

Datasets Curation

Datasets

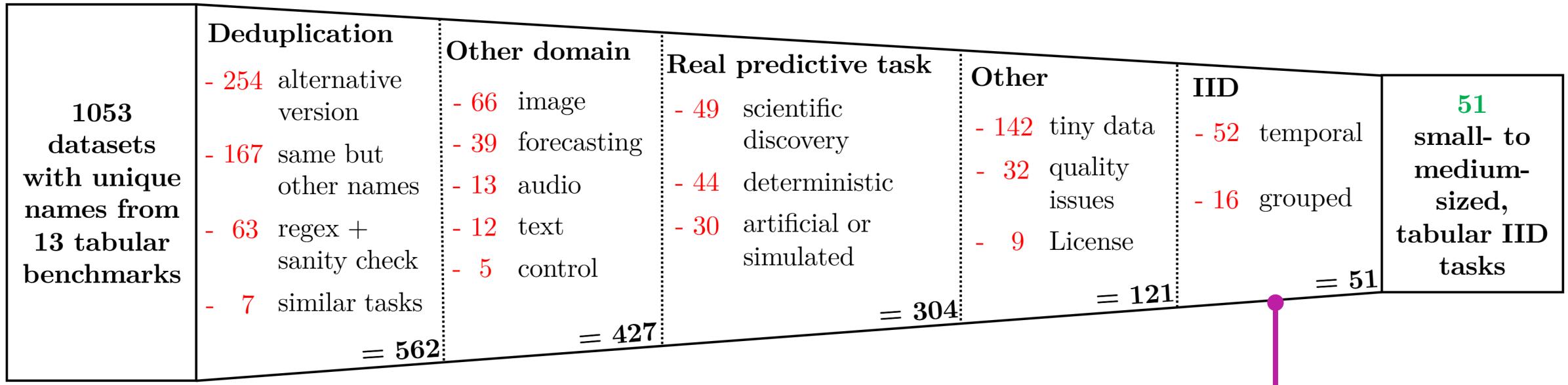


Other

- Many tiny (often old) datasets
- Datasets with preprocessing errors (PCA data leakage), missing source information, and target leakage

Datasets Curation

Datasets



IID Tabular Data

- Tasks that require non-random splits
- Temporal-dependent features / grouped data (e.g., algorithm selection)
- Many borderline cases

Datasets Curation

Datasets

1053 datasets with unique names from 13 tabular benchmarks	Deduplication - 254 alternative version - 167 same but other names - 63 regex + sanity check - 7 similar tasks $= 562$	Other domain - 66 image - 39 forecasting - 13 audio - 12 text - 5 control $= 427$	Real predictive task - 49 scientific discovery - 44 deterministic - 30 artificial or simulated $= 304$	Other - 142 tiny data - 32 quality issues - 9 License $= 121$	IID - 52 temporal - 16 grouped $= 51$	51 small- to medium-sized, tabular IID tasks
--	--	--	---	--	---	--

Check for yourself and verify our curation:
<https://tabarena.ai/dataset-curation>

Datasets Curation

Datasets

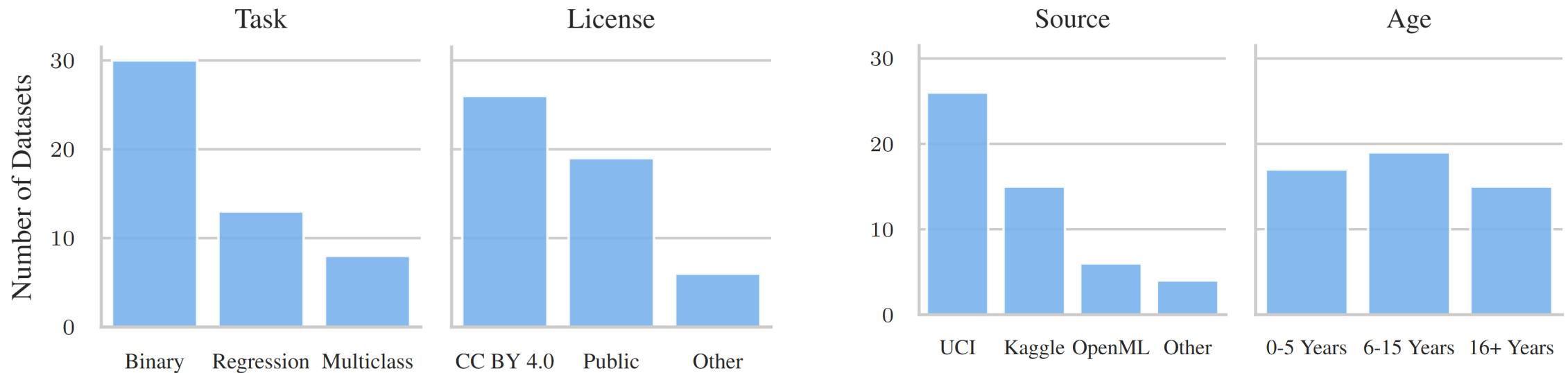
1053 datasets with unique names from 13 tabular benchmarks	Deduplication - 254 alternative version - 167 same but other names - 63 regex + sanity check - 7 similar tasks $= 562$	Other domain - 66 image - 39 forecasting - 13 audio - 12 text - 5 control $= 427$	Real predictive task - 49 scientific discovery - 44 deterministic - 30 artificial or simulated $= 304$	Other - 142 tiny data - 32 quality issues - 9 License $= 121$	IID - 52 temporal - 16 grouped $= 51$	51 small- to medium-sized, tabular IID tasks
--	--	--	---	--	---	--

Check for yourself and verify our curation:
<https://tabarena.ai/dataset-curation>

Smaller is better!
Sometimes at least...

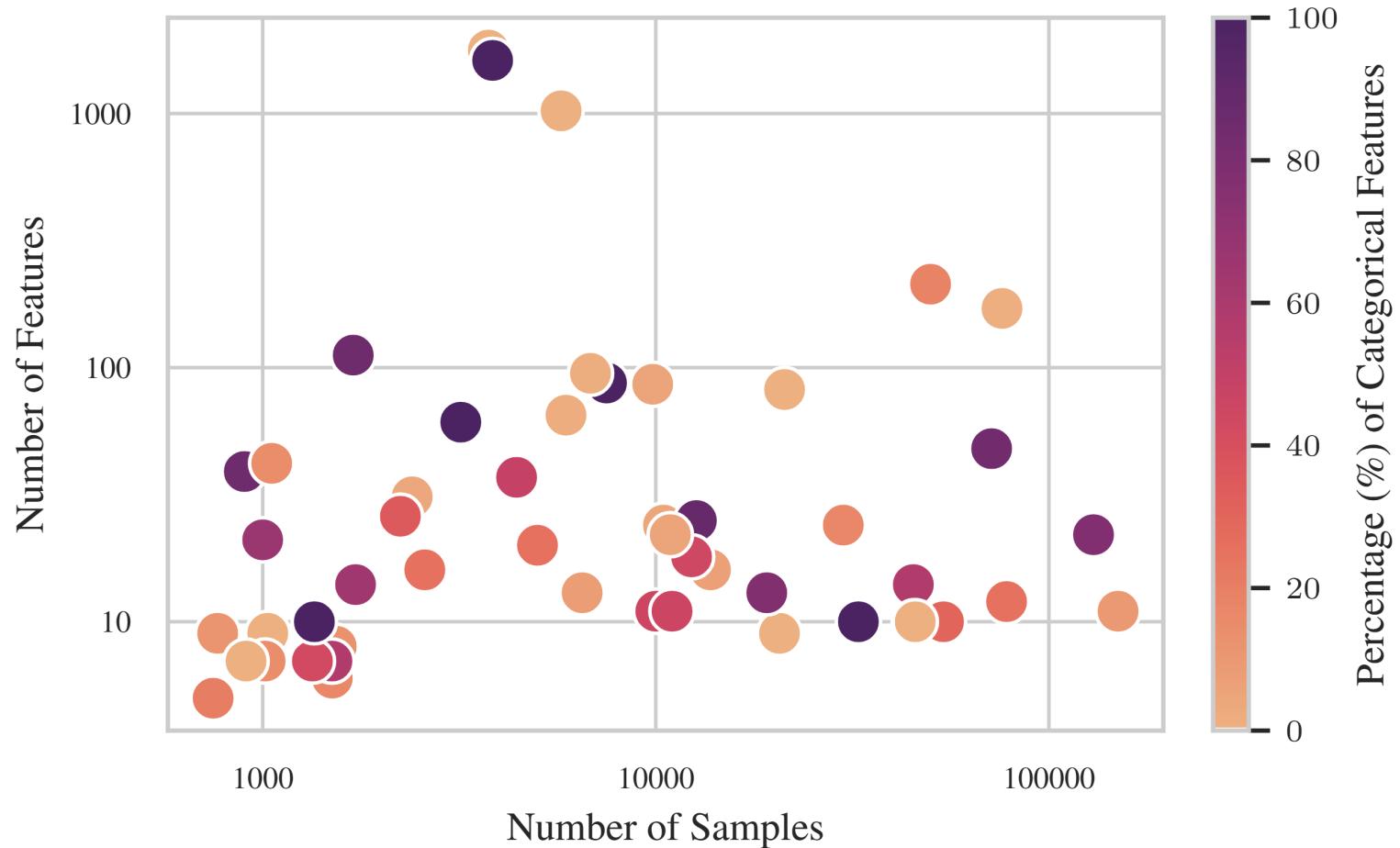
Datasets Overview

Datasets



Datasets Overview

Datasets



Datasets

Compared to Prior Benchmarks

Benchmark	Manual curation	#datasets remaining
Bischl et al. [28, 29]	✗	9/72
Gorishniy et al. [30]	✓	1/11
Shwartz-Ziv and Armon [31]	✗	1/11
Grinsztajn et al. [32]	✓	12/47
McElfresh et al. [33]	✗	13/196
Fischer et al. [34]	✓	8/35
Gijsbers et al. [35]	✓	15/104
Kohli et al. [7]	✓	17/187
Tschalzev et al. [8]	✓	1/10
Holzmüller et al. [20]	✓	10/118
Ye et al. [36]	✗	39/300
Rubachev et al. [10]	✓	0/8
Salinas and Erickson [37]	✗	19/200
TabArena (Ours)	✓	51/51

Focus

Models

Datasets

TabArena-v0.1

Evaluations

Evaluation Design

Evaluations

1. Repeat experiments per dataset:

- 30 times for data with less than 2500 samples (10-repeated 3-fold cv)
- 9 times for all other data (3-repeated 3-fold cv)

2. Using the Elo rating system

- pairwise model comparison
- 400-point Elo Gap corresponds to a 10 to 1 (91%) win rate

3. Robust metrics appropriate for benchmarking

- Binary: ROC AUC
- Multiclass: Log Loss
- Regression: RMSE

Evaluation Design

Evaluations

1. Repeat experiments per dataset:

- 30 times for data with less than 2500 samples (10-repeated 3-fold cv)
- 9 times for all other data (3-repeated 3-fold cv)

2. Using the Elo rating system

- pairwise model comparison
- 400-point Elo Gap corresponds to a 10 to 1 (91%) win rate

3. Robust metrics appropriate for benchmarking

- Binary: ROC AUC
- Multiclass: Log Loss
- Regression: RMSE

4. Realistic reference pipeline for practitioners

- A pipeline practitioners can easily use
- SOTA AutoML, AutoGluon trained for 4 hours

Evaluation Design

Evaluations

1. Repeat experiments per dataset:

- 30 times for data with less than 2500 samples (10-repeated 3-fold cv)
- 9 times for all other data (3-repeated 3-fold cv)

2. Using the Elo rating system

- pairwise model comparison
- 400-point Elo Gap corresponds to a 10 to 1 (91%) win rate

3. Robust metrics appropriate for benchmarking

- Binary: ROC AUC
- Multiclass: Log Loss
- Regression: RMSE

4. Realistic reference pipeline for practitioners

- A pipeline practitioners can easily use
- SOTA AutoML, AutoGluon trained for 4 hours

5. Store and share extensive metadata

Evaluation Design

Evaluations

1. Repeat experiments per dataset:

- 30 times for data with less than 2500 samples (10-repeated 3-fold cv)
- 9 times for all other data (3-repeated 3-fold cv)

2. Using the Elo rating system

- pairwise model comparison
- 400-point Elo Gap corresponds to a 10 to 1 (91%) win rate

3. Robust metrics appropriate for benchmarking

- Binary: ROC AUC
- Multiclass: Log Loss
- Regression: RMSE

4. Realistic reference pipeline for practitioners

- A pipeline practitioners can easily use
- SOTA AutoML, AutoGluon trained for 4 hours

5. Store and share extensive metadata

- such as: validation predictions (per-fold), test predictions, training time, inference time, precomputed results on various metrics, hyperparameters – “[TabRepo 2.0](#)”

Evaluation Design

Evaluations

1. Repeat experiments per dataset:

- 30 times for data with less than 2500 samples (10-repeated 3-fold cv)
- 9 times for all other data (3-repeated 3-fold cv)

2. Using the Elo rating system

- pairwise model comparison
- 400-point Elo Gap corresponds to a 10 to 1 (91%) win rate

3. Robust metrics appropriate for benchmarking

- Binary: ROC AUC
- Multiclass: Log Loss
- Regression: RMSE

4. Realistic reference pipeline for practitioners

- A pipeline practitioners can easily use
- SOTA AutoML, AutoGluon trained for 4 hours

5. Store and share extensive metadata

- such as: validation predictions (per-fold), test predictions, training time, inference time, precomputed results on various metrics, hyperparameters – “[TabRepo 2.0](#)”

Evaluation Design

Evaluations

Benchmark	#splits		Results available
	inner	outer	
Bischl et al. [28, 29]	1	10	(✓)
Gorishniy et al. [30]	1	1	✗
Shwartz-Ziv and Armon [31]	1	{1, 3}	✗
Grinsztajn et al. [32]	1	{1, 2, 3, 5}	(✓)
McElfresh et al. [33]	1	10	(✓)
Fischer et al. [34]	{1, 3, 10}	{1, 10, 100}	(✓)
Gijsbers et al. [35]	-	10	(✓)
Kohli et al. [7]	1	1	✗
Tschalzev et al. [8]	10	1	✗
Holzmüller et al. [20]	1	10	✓
Ye et al. [36]	1	1	(✓)
Rubachev et al. [10]	1	1	(✓)
Salinas and Erickson [37]	8	3	✓
TabArena (Ours)	8	{9, 30}	✓

Focus

Models

Datasets

Evaluations

TabArena-v0.1

Results

The TabArena Team

Nick
Erickson

Lennart
Purucker

Andrej
Tschalzev

David
Holzmüller

Prateek
Mutalik Desai

David
Salinas

Frank
Hutter

PRIOR
LABS

The TabArena Team

Nick
Erickson

Lennart
Purucker

Andrej
Tschalzev

David
Holzmüller

Prateek
Mutalik Desai

David
Salinas

Frank
Hutter

INSTITUTE
TÜBINGEN

Competing interests

D.H. is one of the authors of RealMLP and one of the authors of TabICL.

D.S. and N.E. are the authors of TabRepo.

N.E., L.P., and P.M.D. are developers of AutoGluon, and in extension, the current maintainers of FastAI MLP and Torch MLP.

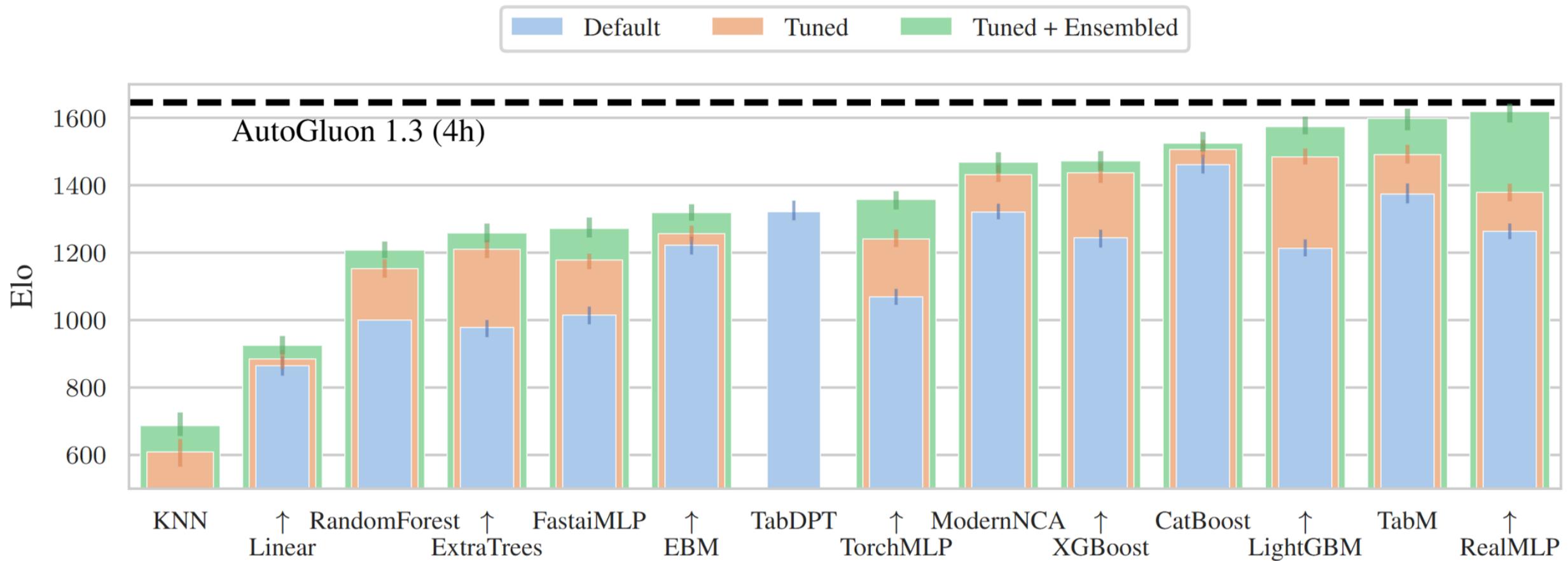
L.P. and F.H. are a subset of the authors of TabPFNv2.

L.P. is an OpenML core contributor.

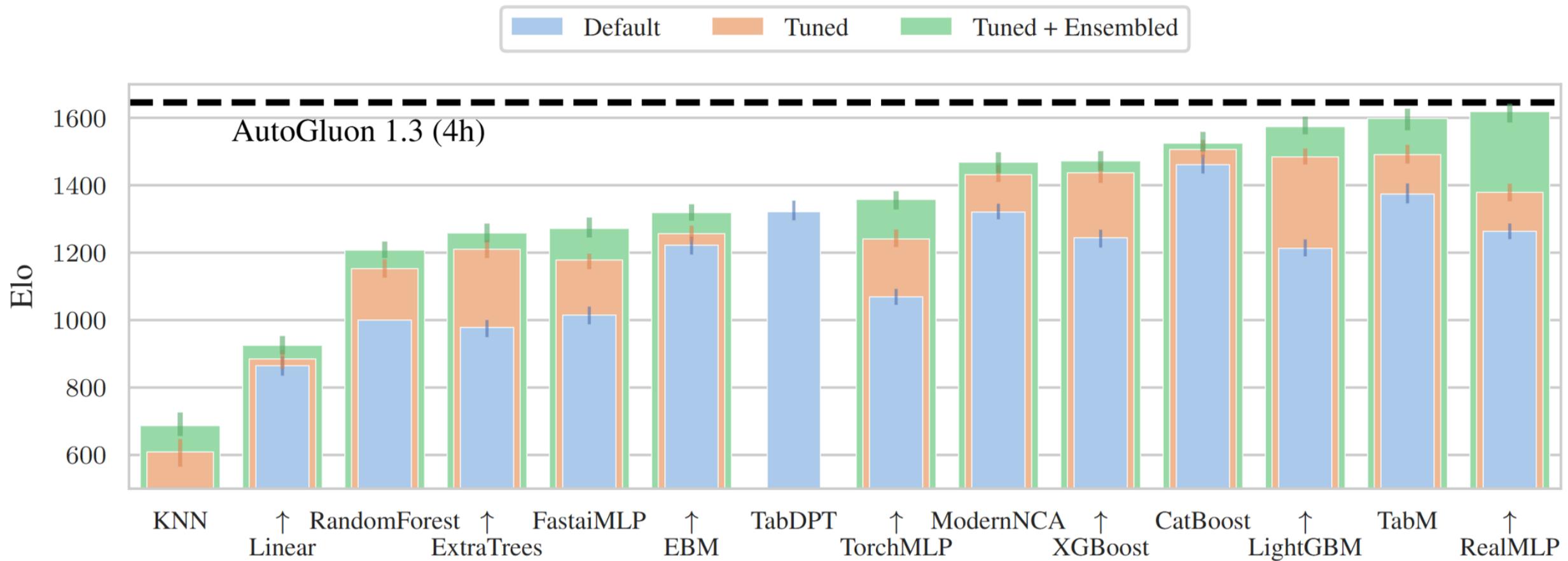
F.H. is affiliated with PriorLabs, a company focused on developing tabular foundation models.

The authors declare no other competing interests.

Main Results

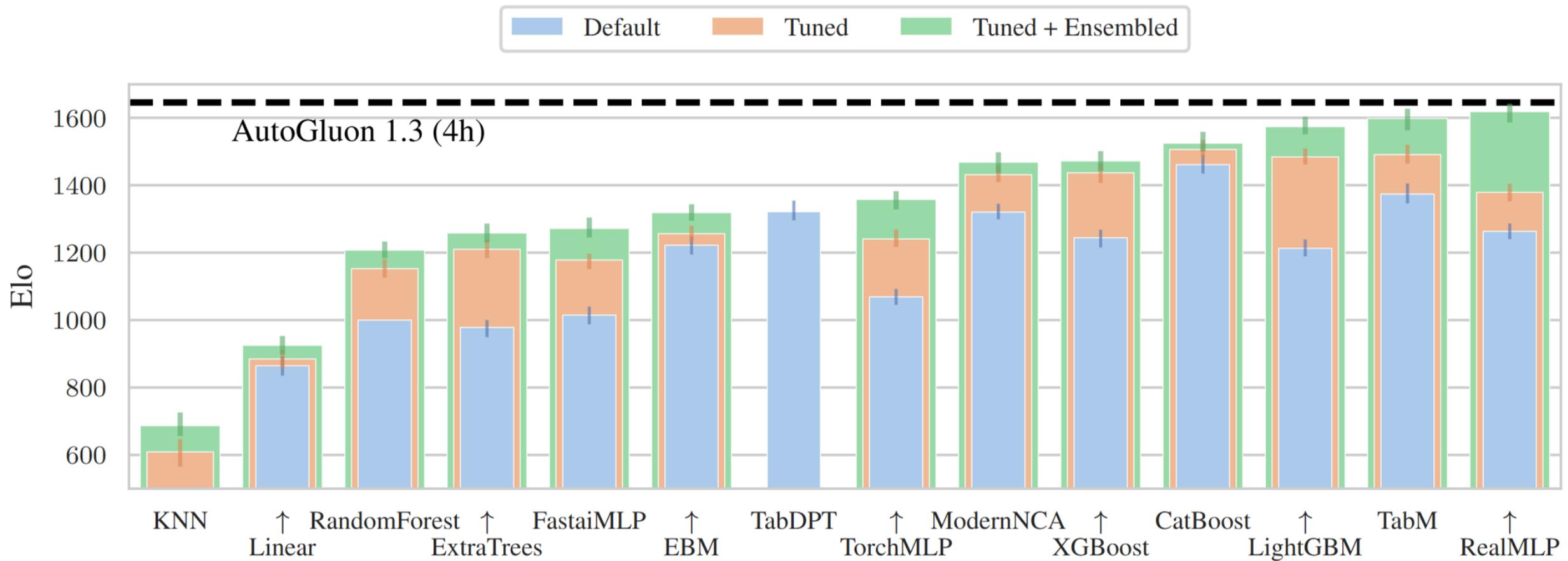


Main Results



CatBoost is best by default and with tuning.

Main Results



CatBoost is best by default and with tuning.

Deep learning models dominate with ensembling.

Main Results (cont.)

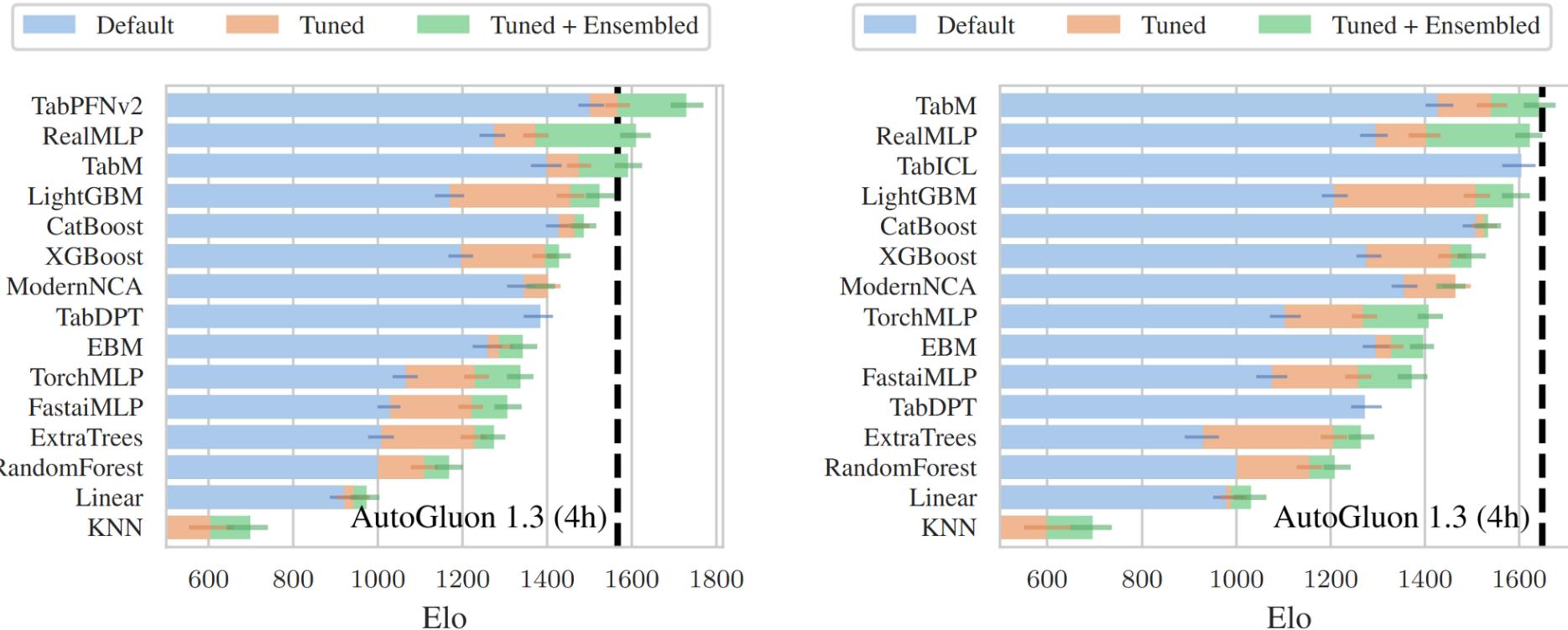


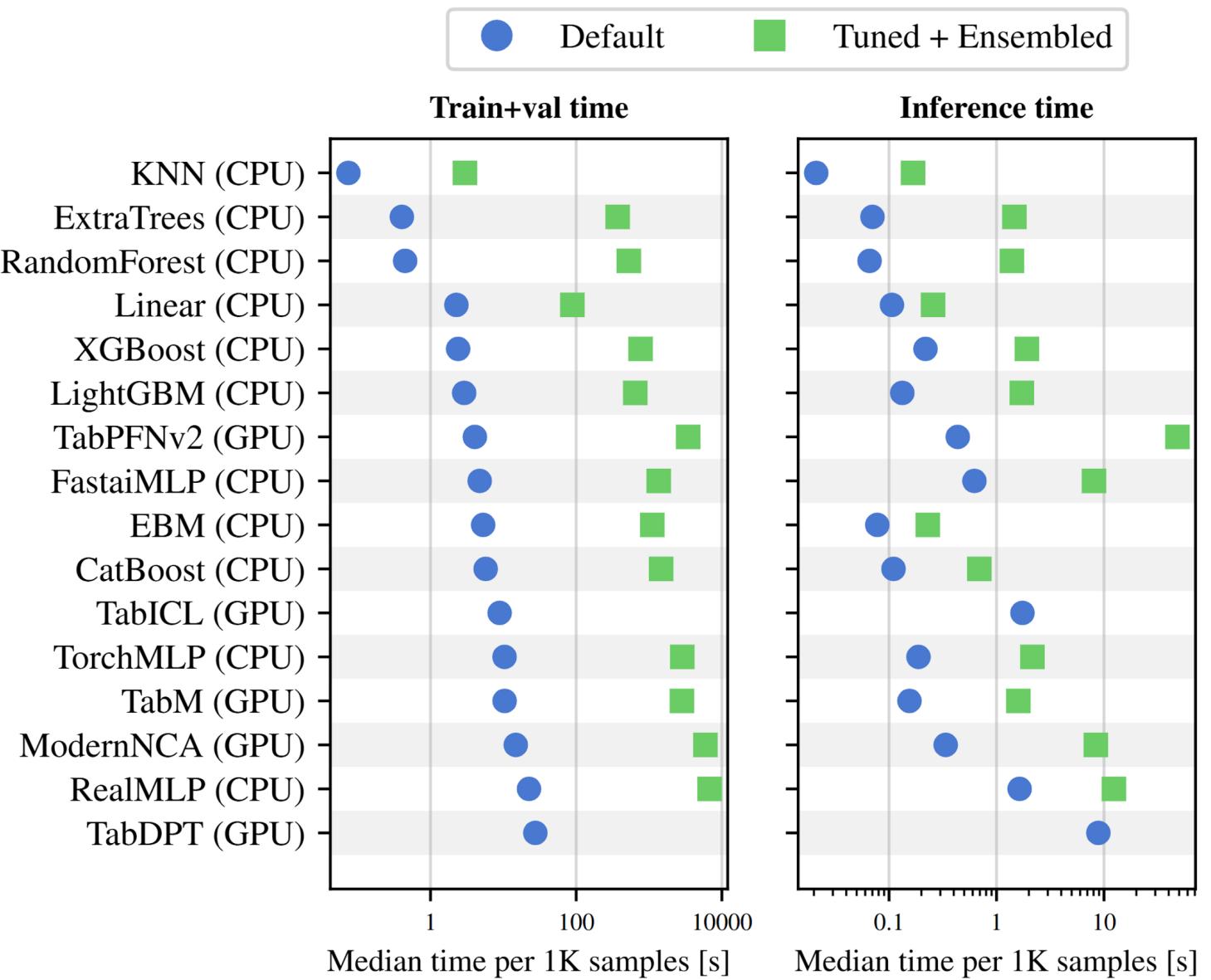
Figure 4: **Leaderboard for TabPFNv2-compatible (left) and TabICL-compatible (right) datasets.** For TabPFNv2, we obtain 33 datasets ($\leq 10K$ training samples, ≤ 500 features). For TabICL, we obtain 36 classification datasets ($\leq 100K$, ≤ 500). Everything but the datasets is identical to [Figure 1](#).

Foundation models dominate by default (and with tuning) within their constraints.

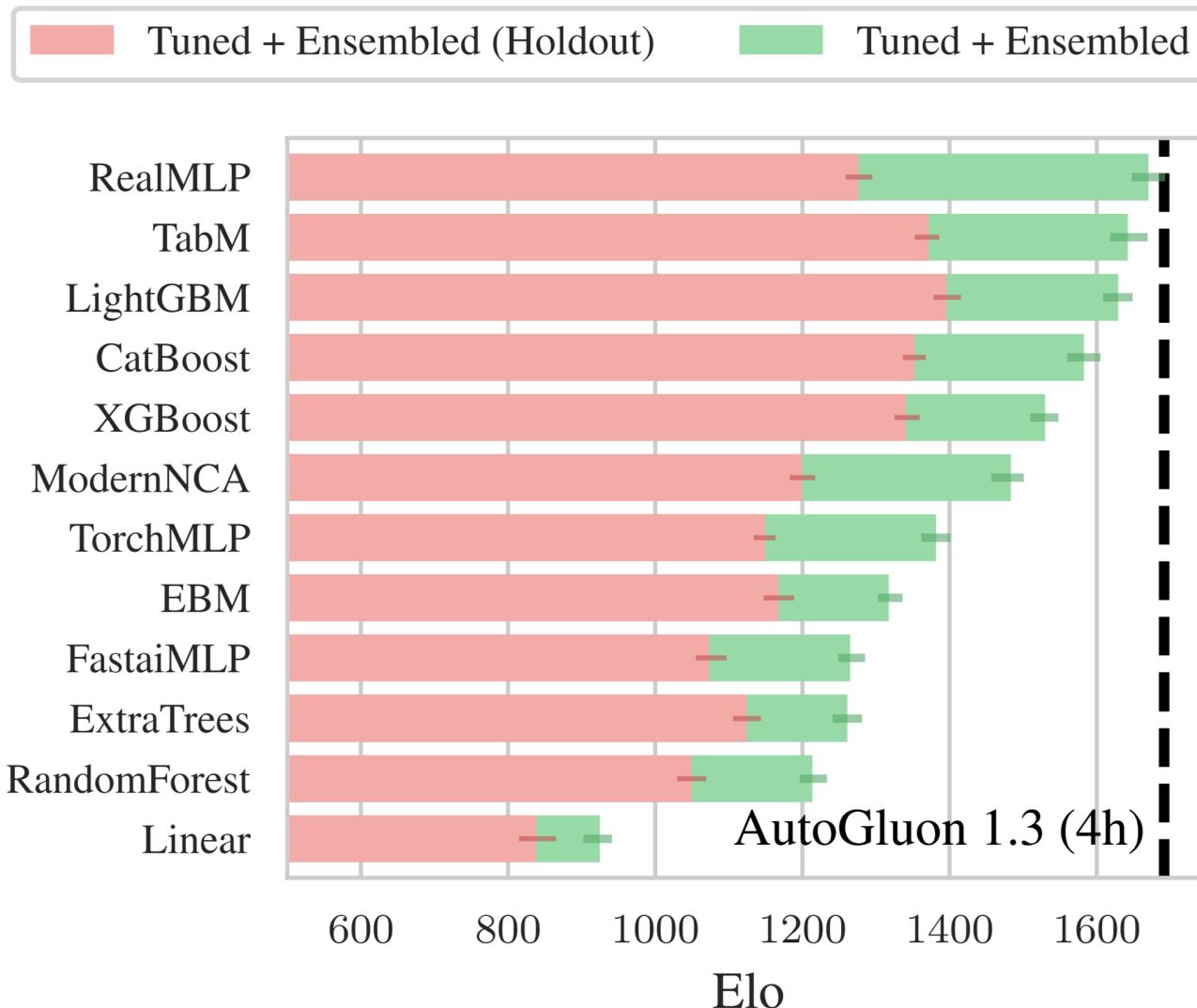
Additional Results: Time trade-off

Efficiency under peak performance:

- **Train+val time** is a must!
 - See TabDPT
- **Ensembling is expensive** but (often) worth it.
- **Deep learning models are more expensive** in general
- **Optimized implementations shine** (e.g. CatBoost)



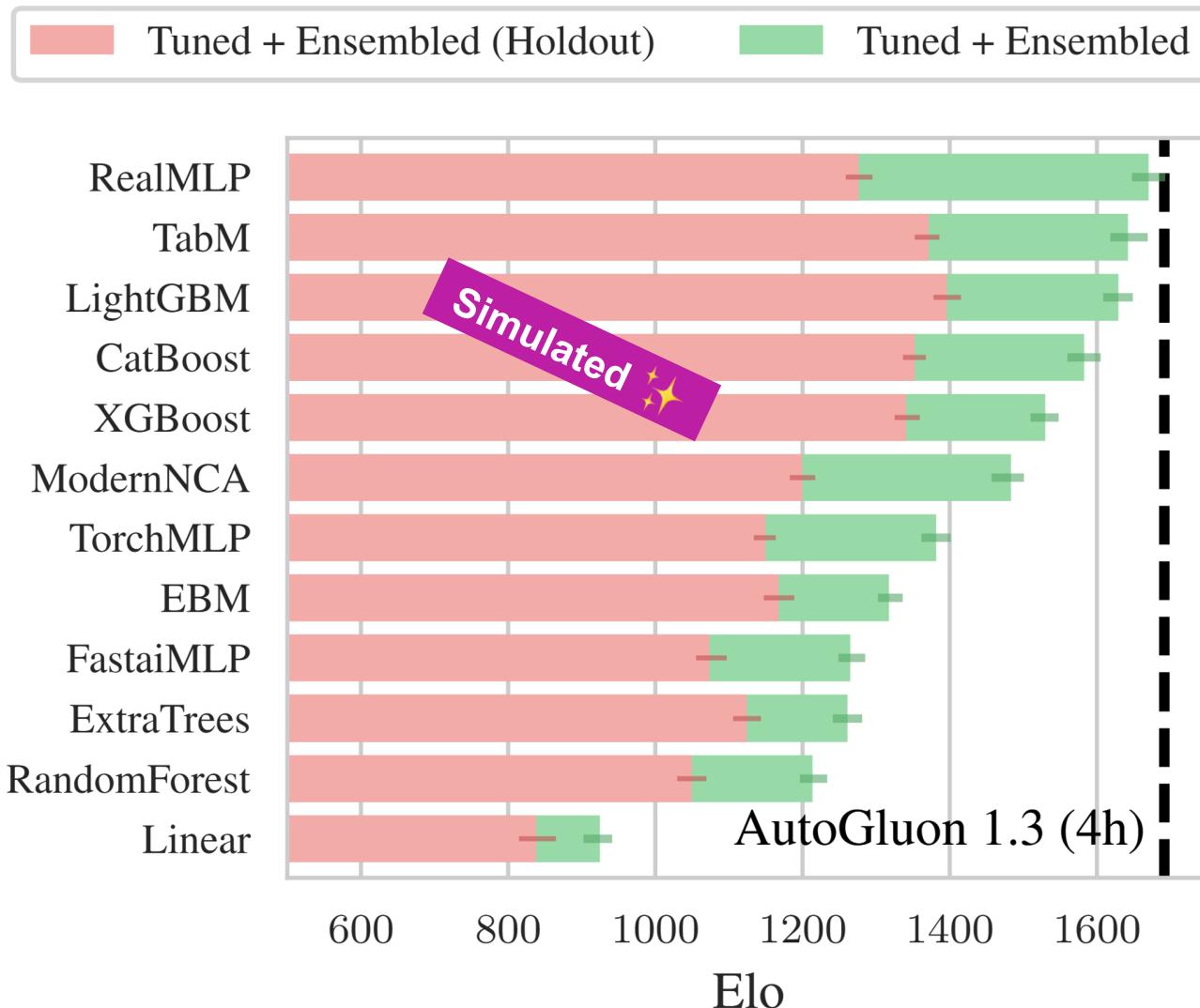
Additional Results: Hold Holdout!



Do not use holdout validation!

- **Worse peak performance** (after HPO + Ensembling)
- Relative **model ranking changes**
- **Unreliable for post-hoc analysis** (e.g., meta-feature analysis)

Additional Results: Hold Holdout!

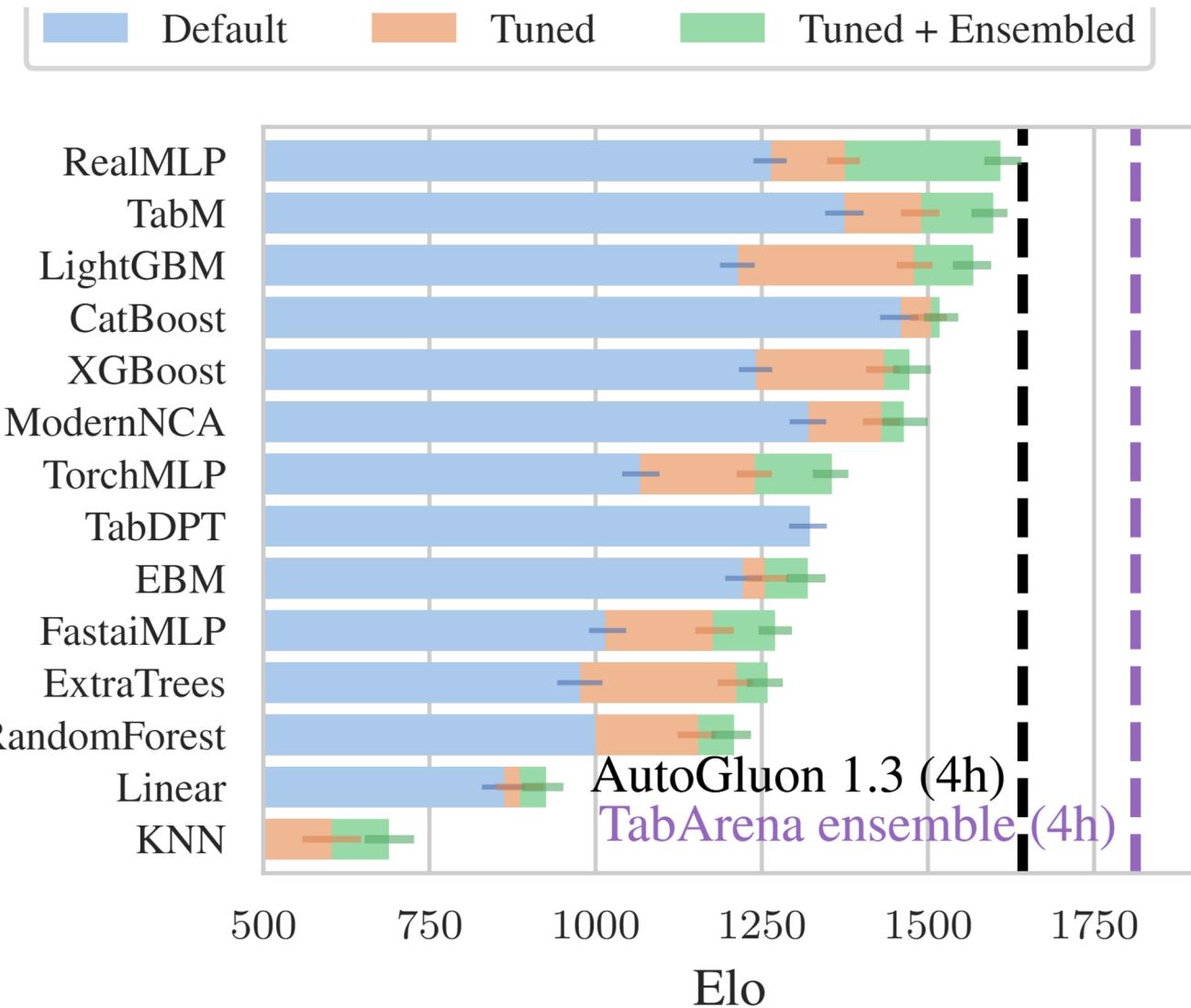


Do not use holdout validation!

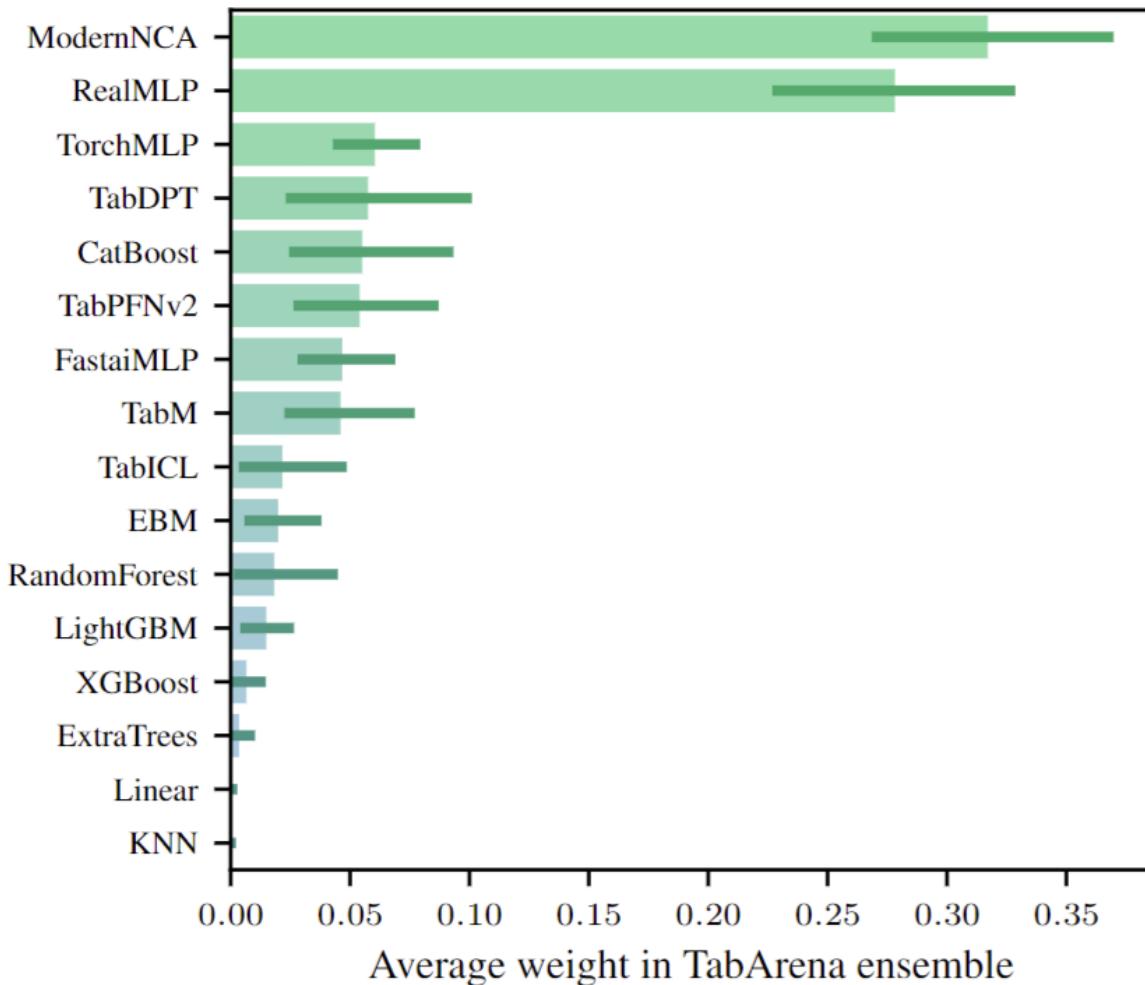
- **Worse peak performance** (after HPO + Ensembling)
- Relative **model ranking changes**
- **Unreliable for post-hoc analysis** (e.g., meta-feature analysis)

Additional Results: Ensembling

- Fully **simulated** **AutoML system** (AutoGluon-like)
- **Significantly better**, even with 4 hours instead of 200 configs
- **The real research goal**; GBDT vs. Deep learning is “just” framing



Additional Results: What are (maybe) important models?



Contributions to ensembles!

- Contributing most to the ensemble must be important (?)

Future work:

- Can we deprecate unimportant models?
- Approach likely not representative due to overfitting

TabArena Ecosystem

Hugging Face Leaderboard: <https://tabarena.ai/>

TabArena Leaderboard for Predictive Machine Learning on IID Tabular Data

TabArena is a living benchmark system for predictive machine learning on tabular data. The goal of TabArena and its leaderboard is to assess the peak performance of model-specific pipelines.

Datasets Models

Metrics Reference Pipeline

More Details Citation

TabArena Overview

The ranking of all models (with imputation) across various leaderboards.

Search...

Type	Model	Main	Classification	Regression	TabICL-data	TabPFN-data	TabPFN/ICL-data	Lite
MLP	RealMLP (tuned + ensemble)	1	2	1	2	2	4	1
MLP	TabM (tuned + ensemble)	2	1	7	1	3	2	3
GBM	LightGBM (tuned + ensemble)	3	3	5	4	5	7	2
GBM	CatBoost (tuned + ensemble)	4	6	4	6	7	10	4
GBM	CatBoost (tuned)	5	7	6	7	10	11	6
MLP	TabM (tuned)	6	5	12	5	9	8	9
GBM	LightGBM (tuned)	7	8	9	10	11	9	8
GBM	XGBoost (tuned + ensemble)	8	11	8	11	12	15	7
MLP	ModernNCA (tuned + ensemble)	9	14	2	14	17	19	5
GBM	CatBoost (default)	10	10	13	9	13	13	10
MLP	TabPFNv2 (tuned + ensemble)	11	9	15	8	1	1	13
GBM	XGBoost (tuned)	12	13	10	13	16	17	11

Living Benchmark: First Steps

⚡ [WIP][New Model] TabFlex ✓

#171 opened 4 days ago by LennartPurucker updated 4 days ago

[new model](#)

⚡ Mitra Pull Request

#161 opened last month by xiyuanzh updated last week

⚡ update to EBM hyperparameters

#158 opened on May 30 by paulbkoch • 1

⚡ [WIP][New Model] PerpetualBoosting ✓

#170 opened 4 days ago by LennartPurucker updated 4 days ago

[new model](#)

⚡ [WIP][New Model] BETA-TabPFN ✓

#172 opened 4 days ago by LennartPurucker

[new model](#)

⚡ [WIP][New Model] Dynamic Programming Decision Trees

#176 opened 3 days ago by KohlerHECTOR updated 3 days ago 4 tasks

[new model](#)

Using all our models – or with the next version of AutoGluon :)

```
9  from autogluon.core.data import LabelCleaner
10 from autogluon.features.generators import AutoMLPipelineFeatureGenerator
11 from sklearn.datasets import load_breast_cancer
12 from sklearn.metrics import roc_auc_score
13 from sklearn.model_selection import train_test_split
14
15 # Import a TabArena model
16 from tabrepo.benchmark.models.ag.realmpl.realmpl_model import RealMLPModel
17
18 # Get Data
19 X, y = load_breast_cancer(return_X_y=True, as_frame=True)
20 X_train, X_test, y_train, y_test = train_test_split(
21     X, y, test_size=0.5, random_state=42
22 )
23 # Preprocessing
24 feature_generator, label_cleaner = (
25     AutoMLPipelineFeatureGenerator(),
26     LabelCleaner.construct(problem_type="binary", y=y),
27 )
28 X_train, y_train = (
29     feature_generator.fit_transform(X_train),
30     label_cleaner.transform(y_train),
31 )
32 X_test, y_test = feature_generator.transform(X_test), label_cleaner.transform(y_test)
33
34 # Train TabArena Model
35 clf = RealMLPModel()
36 clf.fit(X=X_train, y=y_train)
37
38 # Predict and score
39 prediction_probabilities = clf.predict_proba(X=X_test)
40 print("ROC AUC:", roc_auc_score(y_test, prediction_probabilities))
```

<https://tabarena.ai/code-examples>

Public Dataset Curation: <https://tabarena.ai/dataset-curation>

1	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R
1	tid	did	name	Comments	Year	License	Potential issue	Domain	Required split	Relevant task	Refer Or	Include (Andrej)	Explanation (Andrej)	Include (Lennart)	Explanation (Lennart)	Final Decision	Benchmark	
2	2	2	anneal	Not much is known, might be legit; likely from steel production (annealing) as most attributes point to chemical components	1990	Outdated	Tabular	random	Maybe	https://10.2.1.102/datasets/anneal	No	Not in TabRepo, so likely trivial	Maybe	As long as it is not trivial, this seems to be a legit dataset	Yes	Tabular		
3	6	6	letter	Numerical features extracted from images of letters; also includes data augmentation of the images	1991	Image domain	Image	-	No	P. W. http://www.ics.uci.edu/~mlearn/MLRepository.html	No	Image	No	Image	No	Image		
4	11	11	balance-scale	generated data to model a psychological experiment	1976	trivial, artificial, deterministic	Artificial	-	No	Siegler http://www.csie.ntu.edu.tw/~cjlin/libsvm/	No	Artificial	No	Artificial	No	Deterministic		
5	15	15	breast-w	Nowadays solved differently, domain features extracted from images	1995	Maybe Image domain, outdated	Image, tabu	random	No	This http://www.csie.ntu.edu.tw/~cjlin/libsvm/	No	Image	No	Image, Outdated	No	Image		
6	24	24	mushroom	New knowledge about mushrooms likely is available nowadays, dataset from a book (I guess);	1981	trivial	Tabular	random	No	10.24 Audit https://10.2.1.102/datasets/mushroom	No	Trivial	No	Trivial	No	Scientific Discovery		
7	26	26	nursery	Data was derived from a hierarchical decision model, likely trivial as samples cover all possible values; also originally a regression task; no ground truth that the	1989	Outdated, Simulated, ethical issues as reproduces biases	Simulated	-	Maybe	https://10.2.1.102/datasets/nursery	No	Simulated	No	Simulated/Ethical	No	Artificial/Simulated		
8	28	28	optdigits	Yet another handwritten digits dataset...	1995	Image domain	Image	Grouped	No	https://10.2.1.102/datasets/optdigits	No	Image	No	Image	No	Image		
9	30	30	page-blocks	Grouped data, random splits may be inappropriate, meta-features extract from images, colu... on the original Limpic	1995	Image domain	Image	Grouped	No	https://10.2.1.102/datasets/page-blocks	No	Image	No	Image	No	Image		
10	32	32	pendigits	Yet another handwritten digits dataset.... Grouped data, random splits may be inappropriate, either image or weird	1998	Other domain	Image, Pixe	Grouped	No	https://10.2.1.102/datasets/pendigits	No	Image	No	Image, heavily preprocess	No	Image		
11	37	37	diabetes	Rather interpretability than predictive performance task, nowadays done differently	1988	Outdated	Tabular	random	Maybe	Smith: Missing https://10.2.1.102/datasets/diabetes	Yes	Fits our criteria, but TabRepo results for this dataset are pretty random	Yes	No objection	Yes	Tabular		
12	41	42	soybean	Some infrequent classes should not be used for prediction, may be outdated, maybe also rather an interpretability task, might require time split as date is available; categorical and nan values already preprocessed	1988	Preprocessing, Historic problems with classes (see e-mails from UCI download)	Tabular	random	Maybe	R.S. http://www.ics.uci.edu/~mlearn/MLRepository.html	No	Needs proper task definition and Conditiona	Unclear	After some preprocessi...ng, I can see this being added	No	Tiny data		
13	43	44	spambase	Text formatted as table, outdated task / solution, not meta-features but text features, class indicat... of	1998	Text domain	Text	-	No	https://10.2.1.102/datasets/spambase	No	Text	No	Text	No	Text		
14	45	46	splice	Domain specific methods might exist; preprocessed DNA data	1991	-	Special tab	random	Maybe	? http://www.ics.uci.edu/~mlearn/MLRepository.html	Yes	Special domain and quite old, but no particular reason to exclude.	Yes	No objection	Yes	Tabular		
15	49	50	tic-tac-toe	GBDTs & NNs perform perfectly	1991	trivial, artificial, deterministic	Artificial	random	No	? http://www.ics.uci.edu/~mlearn/MLRepository.html	No	Artificial	No	Deterministic	No	Deterministic		
16	58	60	waveform-500	19/40 features are pure noise, data describes waves and was simulated; data from a book	1984	Artificial, Deterministic with noise	Artificial	random	No	Brein http://www.ics.uci.edu/~mlearn/MLRepository.html	No	Artificial	No	Deterministic	No	Deterministic		
17	219	151	electricity	leak if not temporal split; manually normalized but unclear how; day-wise and week-wise temporal split	1996-1998	temporal split	tabular	temporal	Maybe	M. He http://www.ics.uci.edu/~mlearn/MLRepository.html	No	Temporal split	No	Temporal split	No	Temporal Tabular		
18	223	155	pokerhand	game data, normalized version, solvable by a look-up table of deterministic algorithm	2002	artificial, deterministic	Artificial	random	No	https://10.2.1.102/datasets/pokerhand	No	Artificial	No	Deterministic	No	Deterministic		

Likely too

Public Dataset Curation: <https://tabarena.ai/dataset-curation>

1	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R
1	tid	did	name	Comments	Year	License	Potential issue	Domain	Required split	Relevant task	Refer Or	Include (Andrej)	Explanation (Andrej)	Include (Lennart)	Explanation (Lennart)	Final Decision	Benchmark	
2	2	2	anneal	Not much is known, might be legit; likely from steel production (annealing) as most attributes point to chemical components	1990	Outdated	Tabular	random	Maybe	https://10.2.1.102/datasets/anneal	No	Not in TabRepo, so likely trivial	Maybe	As long as it is not trivial, this seems to be a legit dataset	Yes	Tabular		
3	6	6	letter	Numerical features extracted from images of letters; also includes data augmentation of the images	1991	Image domain	Image	-	No	P. W. http://www.ics.uci.edu/~mlearn/MLRepository.html	No	Image	No	Image	No	Image		
4	11	11	balance-scale	generated data to model a psychological experiment	1976	trivial, artificial, deterministic	Artificial	-	No	Siegler http://www.csie.ntu.edu.tw/~cjlin/libsvm/	No	Artificial	No	Artificial	No	Deterministic		
5	15	15	breast-w	Nowadays solved differently, domain features extracted from images	1995	Maybe Image domain, outdated	Image, tabu	random	No	This http://www.csie.ntu.edu.tw/~cjlin/libsvm/	No	Image	No	Image, Outdated	No	Image		
6	24	24	mushroom	New knowledge about mushrooms likely is available nowadays, dataset from a book (I guess);	1981	trivial	Tabular	random	No	10.24 Audit https://10.2.1.102/datasets/mushroom	No	Trivial	No	Trivial	No	Scientific Discovery		
7	26	26	nursery	Data was derived from a hierarchical decision model, likely trivial as samples cover all possible values; also originally a regression task; no ground truth that the	1989	Outdated, Simulated, ethical issues as reproduces biases	Simulated	-	Maybe	https://10.2.1.102/datasets/nursery	No	Simulated	No	Simulated/Ethical	No	Artificial/Simulated		
8	28	28	optdigits	Yet another handwritten digits dataset...	1995	Image domain	Image	Grouped	No	https://10.2.1.102/datasets/optdigits	No	Image	No	Image	No	Image		
9	30	30	page-blocks	Grouped data, random splits may be inappropriate, meta-features extract from images, colu... on the original Limpic	1995	Image domain	Image	Grouped	No	https://10.2.1.102/datasets/page-blocks	No	Image	No	Image	No	Image		
10	32	32	pendigits	Yet another handwritten digits dataset.... Grouped data, random splits may be inappropriate, either image or weird	1998	Other domain	Image, Pixe	Grouped	No	https://10.2.1.102/datasets/pendigits	No	Image	No	Image, heavily preprocess	No	Image		
11	37	37	diabetes	Rather interpretability than predictive performance task, nowadays done differently	1988	Outdated	Tabular	random	Maybe	Smith: Missing https://10.2.1.102/datasets/diabetes	Yes	Fits our criteria, but TabRepo results for this dataset are pretty random	Yes	No objection	Yes	Tabular		
12	41	42	soybean	Some infrequent classes should not be used for prediction, may be outdated, maybe also rather an interpretability task, might require time split as date is available; categorical and nan values already preprocessed	1988	Preprocessing, Historic problems with classes (see e-mails from UCI download)	Tabular	random	Maybe	R.S. http://www.ics.uci.edu/~mlearn/MLRepository.html	No	Needs proper task definition and Conditiona	Unclear	After some preprocessi...ng, I can see this being added	No	Tiny data		
13	43	44	spambase	Text formatted as table, outdated task / solution, not meta-features but text features, also indicates of	1998	Text domain	Text	-	No	https://10.2.1.102/datasets/spambase	No	Text	No	Text	No	Text		
14	45	46	splice	Domain specific methods might exist; preprocessed DNA data	1991	-	Special tab	random	Maybe	? http://www.ics.uci.edu/~mlearn/MLRepository.html	Yes	Special domain and quite old, but no particular reason to exclude.	Yes	No objection	Yes	Tabular		
15	49	50	tic-tac-toe	GBDTs & NNs perform perfectly	1991	trivial, artificial, deterministic	Artificial	random	No	? http://www.ics.uci.edu/~mlearn/MLRepository.html	No	Artificial	No	Deterministic	No	Deterministic		
16	58	60	waveform-500	19/40 features are pure noise, data describes waves and was simulated; data from a book	1984	Artificial, Deterministic with noise	Artificial	random	No	Brein http://www.ics.uci.edu/~mlearn/MLRepository.html	No	Artificial	No	Deterministic	No	Deterministic		
17	219	151	electricity	leak if not temporal split; manually normalized but unclear how; day-wise and week-wise temporal connections	1996-1998	temporal split	tabular	temporal	Maybe	M. He http://www.ics.uci.edu/~mlearn/MLRepository.html	No	Temporal split	No	Temporal split	No	Temporal Tabular		
18	223	155	pokerhand	game data, normalized version, solvable by a look-up table of deterministic algorithm	2002	artificial, deterministic	Artificial	random	No	https://10.2.1.102/datasets/pokerhand	No	Artificial	No	Deterministic	No	Deterministic		

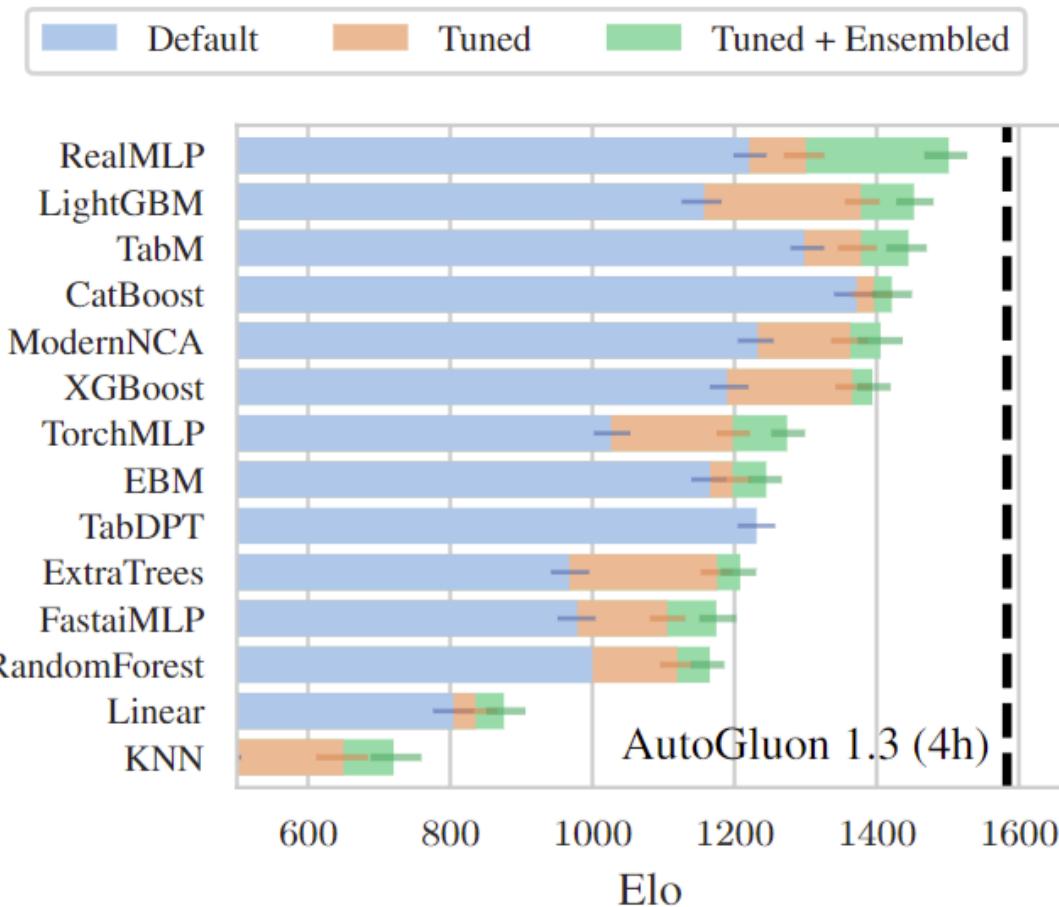
Likely too

Public Dataset Curation: <https://tabarena.ai/dataset-curation>

1	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R
1	tid	did	name	Comments	Year	License	Potential issue	Domain	Required split	Relevant task	Refer Origi	Include (Andrej)	Explanation (Andrej)	Include (Lennart)	Explanation (Lennart)	Final Decision	Benchmark	
2	2	2	anneal	Not much is known, might be legit; likely from steel production (annealing) as most attributes point to chemical components	1990	Outdated	Tabular	random	Maybe	https://10.2.1.102/datasets/anneal	No	Not in TabRepo, so likely trivial	Maybe	As long as it is not trivial, this seems to be a legit dataset	Yes	Tabular		
3	6	6	letter	Numerical features extracted from images of letters; also includes data augmentation of the images	1991	Image domain	Image	-	No	P. W. http://10.2.1.102/datasets/letter	No	Image	No	Image	No	Image		
4	11	11	balance-scale	generated data to model a psychological experiment	1976	trivial, artificial, deterministic	Artificial	-	No	Siegler http://10.2.1.102/datasets/balancescale	No	Artificial	No	Artificial	No	Deterministic		
5	15	15	breast-w	Nowadays solved differently, domain features extracted from images	1995	Maybe Image domain, outdated	Image, tabular	random	No	This http://10.2.1.102/datasets/breast-w	No	Image	No	Image, Outdated	No	Image		
6	24	24	mushroom	New knowledge about mushrooms likely is available nowadays, dataset from a book (I guess);	1981	trivial	Tabular	random	No	10.24 http://10.2.1.102/datasets/mushroom	No	Trivial	No	Trivial	No	Scientific Discovery		
7	26	26	nursery	Data was derived from a hierarchical decision model, likely trivial as samples cover all possible values; also originally a regression task; no ground truth that the	1989	Outdated, Simulated, ethical issues as reproduces biases	Simulated	-	Maybe	https://10.2.1.102/datasets/nursery	No	Simulated	No	Simulated/Ethical	No	Artificial/Simulated		
8	28	28	optdigits	Yet another handwritten digits dataset...	1995	Image domain	Image	Grouped	No	https://10.2.1.102/datasets/optdigits	No	Image	No	Image	No	Image		
9	30	30	page-blocks	Grouped data, random splits may be inappropriate, meta-features extract from images, colu... on the original Lempicki	1995	Image domain	Image	Grouped	No	https://10.2.1.102/datasets/page-blocks	No	Image	No	Image	No	Image		
10	32	32	pendigits	Yet another handwritten digits dataset.... Grouped data, random splits may be inappropriate, either image or weird	1998	Other domain	Image, Pixel	Grouped	No	https://10.2.1.102/datasets/pendigits	No	Image	No	Image, heavily preprocess	No	Image		
11	37	37	diabetes	Rather interpretability than predictive performance task, nowadays done differently	1988	Outdated	Tabular	random	Maybe	Smith: http://10.2.1.102/datasets/diabetes	Yes	Fits our criteria, but TabRepo results for this dataset are pretty random	Yes	No objection	Yes	Tabular		
12	41	42	soybean	Some infrequent classes should not be used for prediction, may be outdated, maybe also rather an interpretability task, might require time split as date is available; categorical and nan values already preprocessed	1988	Preprocessing, Historic problems with classes (see e-mails from UCI download)	Tabular	random	Maybe	R.S. http://10.2.1.102/datasets/soybean	No	Needs proper task definition and Conditiona...	Unclear	After some preprocessing, I can see this being added	No	Tiny data		
13	43	44	spambase	Text formatted as table, outdated task / solution, not meta-features but text features, also indicates of	1998	Text domain	Text	-	No	https://10.2.1.102/datasets/spambase	No	Text	No	Text	No	Text		
14	45	46	splice	Domain specific methods might exist; preprocessed DNA data	1991	-	Special tabular	random	Maybe	? http://10.2.1.102/datasets/splice	Yes	Special domain and quite old, but no particular reason to exclude.	Yes	No objection	Yes	Tabular		
15	49	50	tic-tac-toe	GBDTs & NNs perform perfectly	1991	trivial, artificial, deterministic	Artificial	random	No	? http://10.2.1.102/datasets/tic-tac-toe	No	Artificial	No	Deterministic	No	Deterministic		
16	58	60	waveform-500	19/40 features are pure noise, data describes waves and was simulated; data from a book	1984	Artificial, Deterministic with noise	Artificial	random	No	Brein http://10.2.1.102/datasets/waveform-500	No	Artificial	No	Deterministic	No	Deterministic		
17	219	151	electricity	leak if not temporal split; manually normalized but unclear how; day-wise and week-wise temporal connections	1996-1998	temporal split	tabular	temporal	Maybe	M. He http://10.2.1.102/datasets/electricity	No	Temporal split	No	Temporal split	No	Temporal Tabular		
18	223	155	pokerhand	game data, normalized version, solvable by a look-up table of deterministic algorithm	2002	artificial, deterministic	Artificial	random	No	https://10.2.1.102/datasets/pokerhand	No	Artificial	No	Deterministic	No	Deterministic		

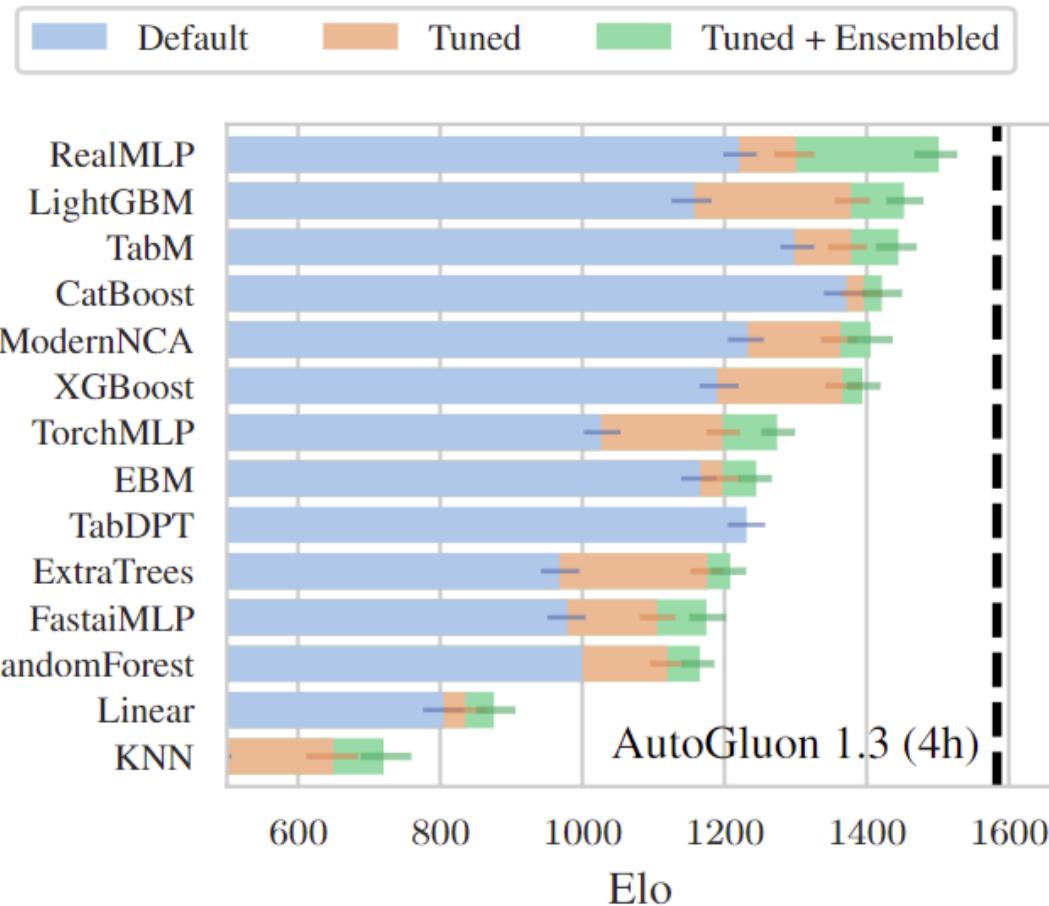
Likely too

Cheaper Evaluation For Papers: TabArena Lite



Only one repeat: 816× fewer jobs

Cheaper Evaluation For Papers: TabArena Lite



Benchmarking TabFlex
with TabArena Lite
takes about 20 minutes

Only one repeat: 816x fewer jobs

TabArena-v1.0?

Open Problems and Future Work

Datasets

- **More data diversity**: domains, tiny, large, non-IID, with text, with images, ...
- Evaluation with (expert) **preprocessing and feature engineering**

Benchmarking

- **Overfitting** the benchmark (?)
- **Bias from data contamination** due to pretraining foundation models or LLMs
- More **realistic user constraints and metrics**

Takeaways

Benchmarks ❤

TabArena is a truly representative benchmark for machine learning on small- to medium sized IID tabular data.

SOTA with Ensembling ↗

CatBoost shines. Deep learning with ensembling dominates. Promising future for foundation models!

Living benchmark baby!

TabArena will be updated and support more (non-IID) data, models, and tasks.

Thank you, any questions?

Leaderboard: <https://tabarena.ai>

Paper: <https://arxiv.org/abs/2506.16791>

Code: <https://tabarena.ai/code>

Nick
Erickson

Lennart
Purucker

Andrej
Tschalzev

David
Holzmüller

Prateek
Mutalik Desai

David
Salinas

Frank
Hutter

Part III

A Case for Openness

The Case of LLMs

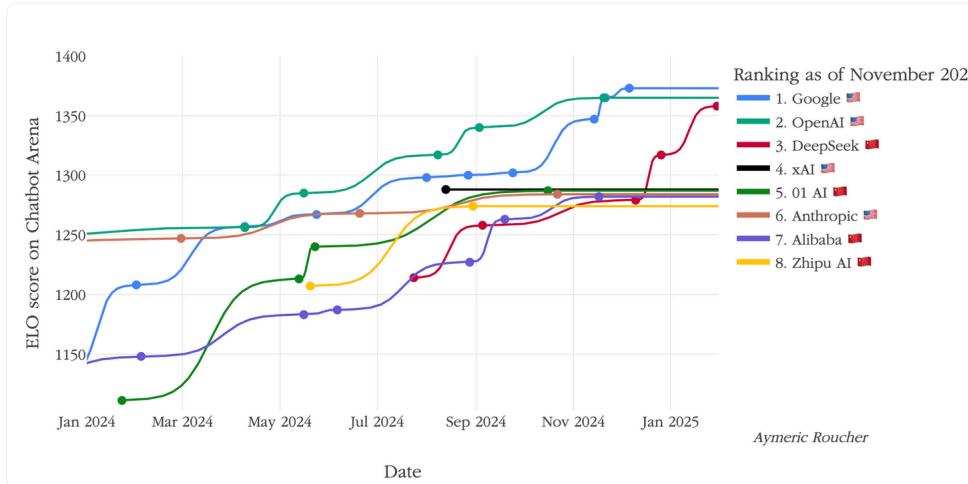
The Case of LLMs

- Currently an arm race

The Case of LLMs

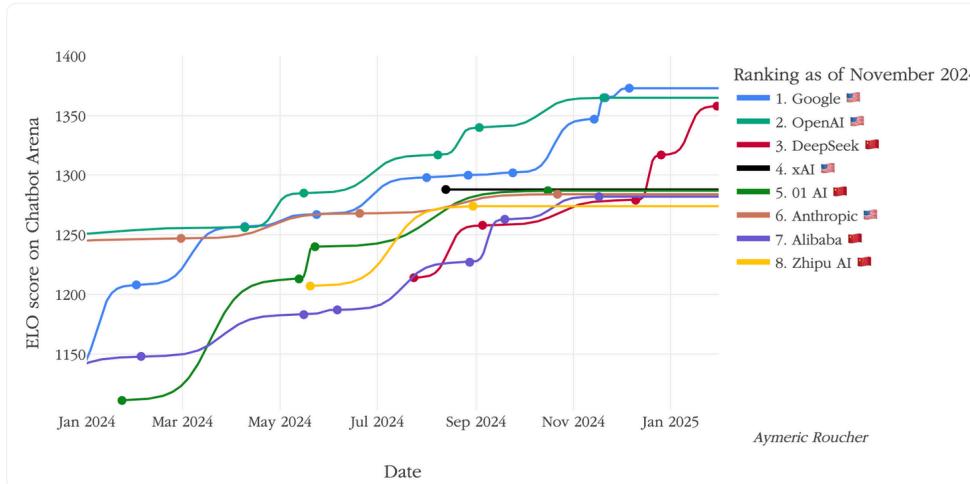
- Currently an arm race
 - One world with N actors developing N models and sharing less and less over time

The Case of LLMs



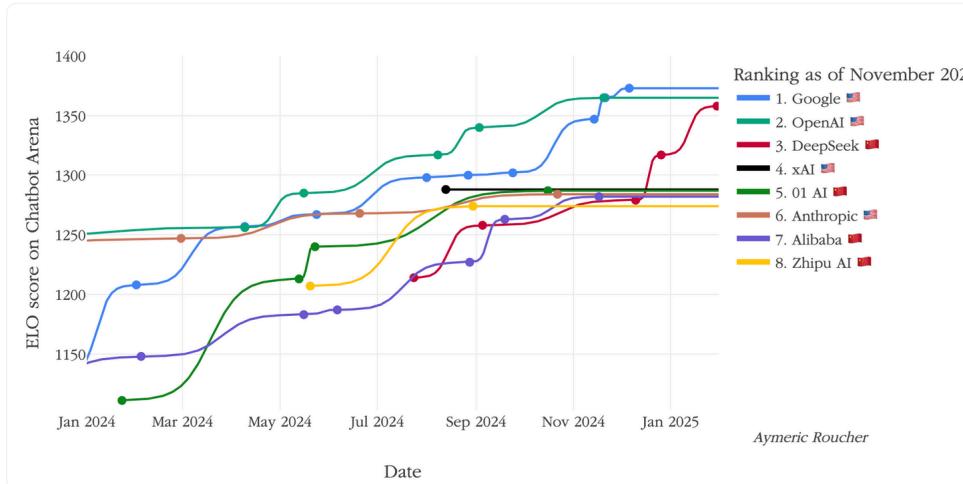
- Currently an arm race
 - One world with N actors developing N models and sharing less and less over time

The Case of LLMs

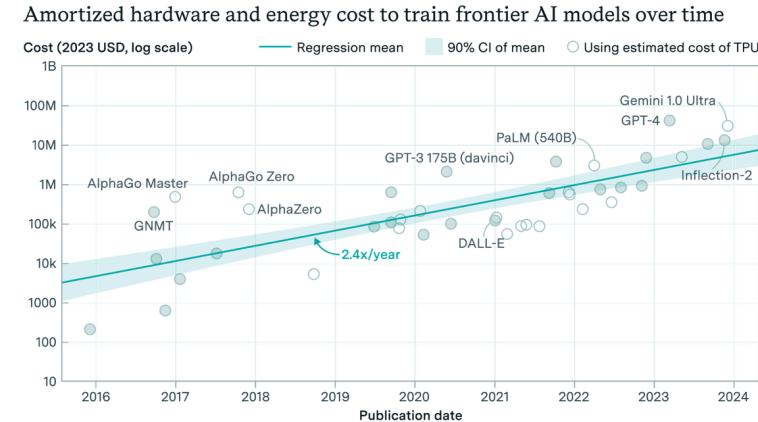


- Currently an arm race
 - One world with N actors developing N models and sharing less and less over time
 - Scaling compute efficiency (the bitter lesson from Sutter)

The Case of LLMs

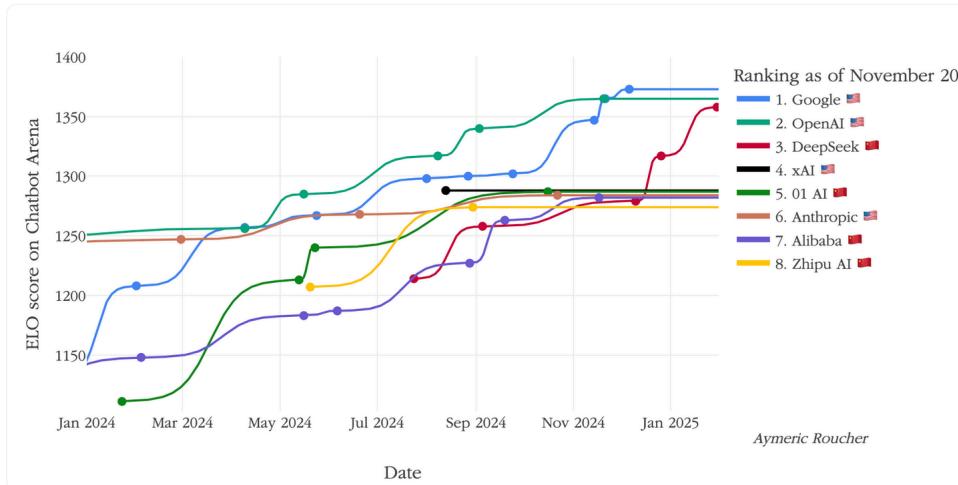
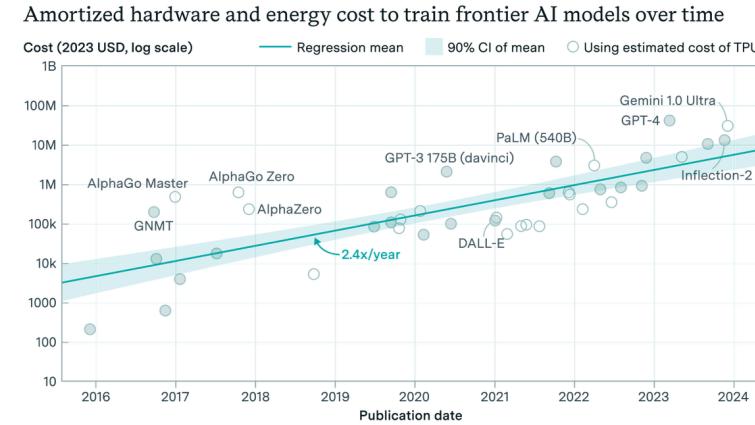


Aymeric Roucher



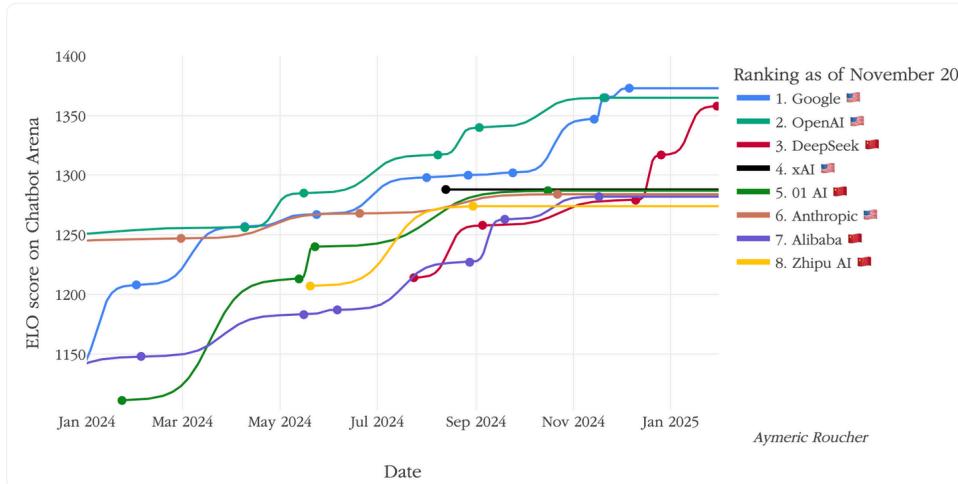
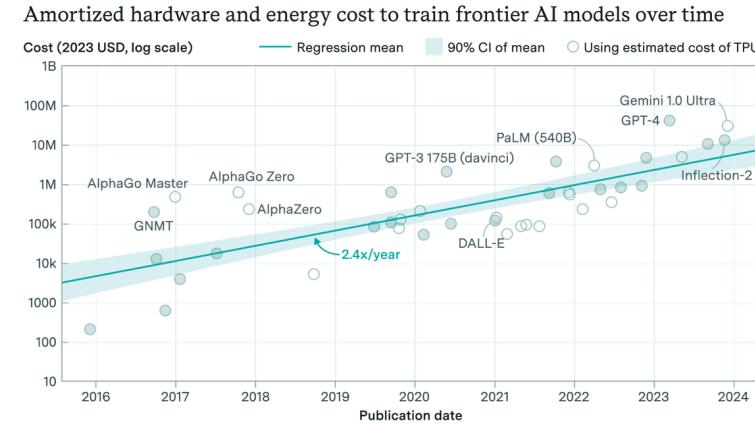
- Currently an arm race
 - One world with N actors developing N models and sharing less and less over time
 - Scaling compute efficiency (the bitter lesson from Sutter)

The Case of LLMs



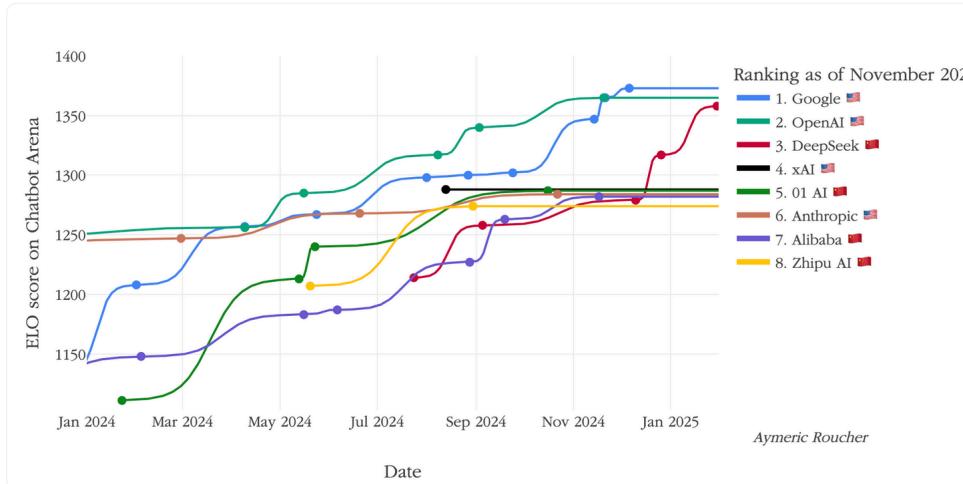
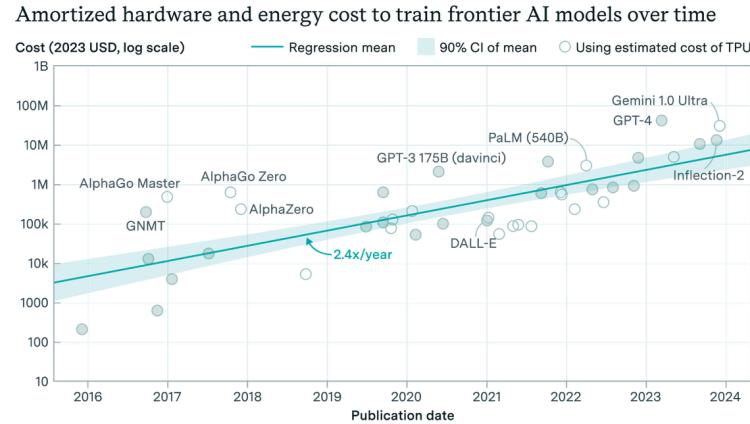
- Currently an arm race
 - One world with N actors developing N models and sharing less and less over time
 - Scaling compute efficiency (the bitter lesson from Sutter)
 - Algorithmic progress: ~4x/year? <https://www.darioamodei.com/post/on-deepseek-and-export-controls>

The Case of LLMs

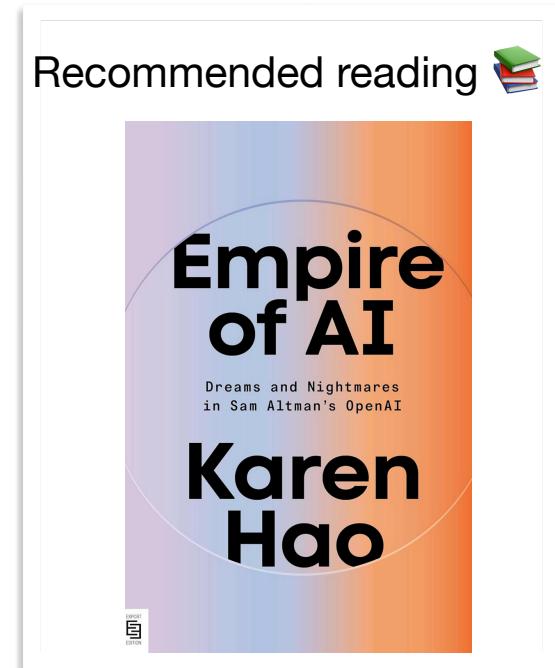


- Currently an arm race
 - One world with N actors developing N models and sharing less and less over time
 - Scaling compute efficiency (the bitter lesson from Sutter)
 - Algorithmic progress: ~4x/year? <https://www.darioamodei.com/post/on-deepseek-and-export-controls>
 - Large ecological cost and human cost (safety annotations done by South developing countries)

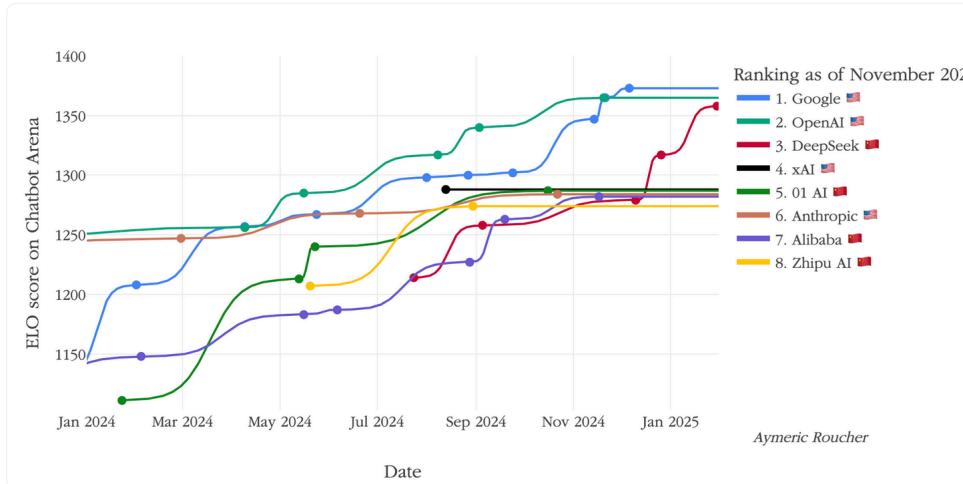
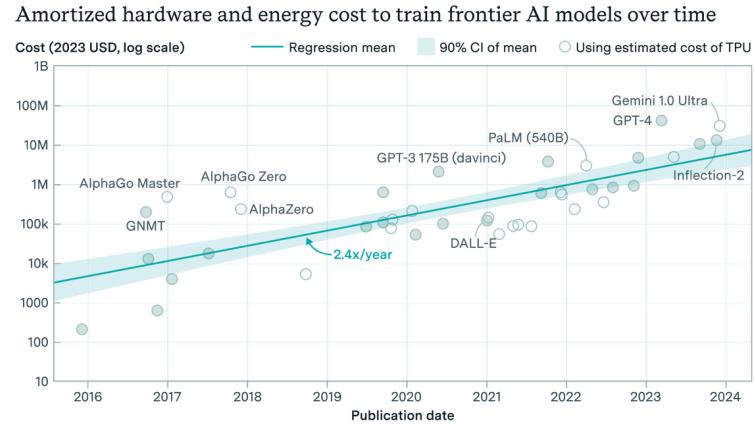
The Case of LLMs



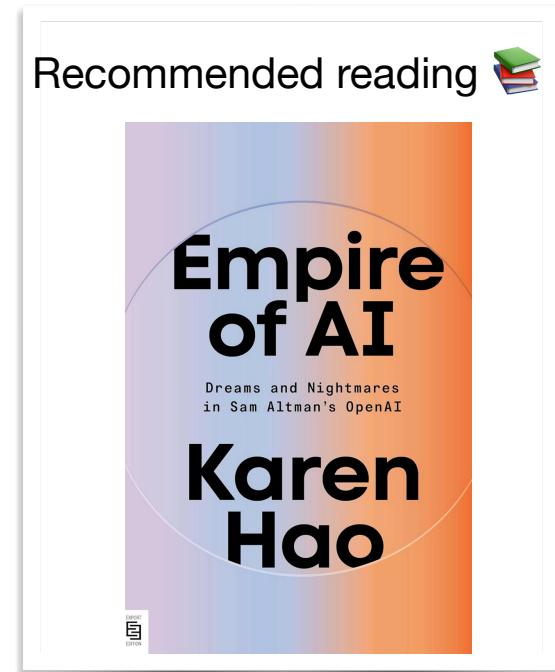
- Currently an arm race
 - One world with N actors developing N models and sharing less and less over time
 - Scaling compute efficiency (the bitter lesson from Sutter)
 - Algorithmic progress: ~4x/year? <https://www.darioamodei.com/post/on-deepseek-and-export-controls>
 - Large ecological cost and human cost (safety annotations done by South developing countries)



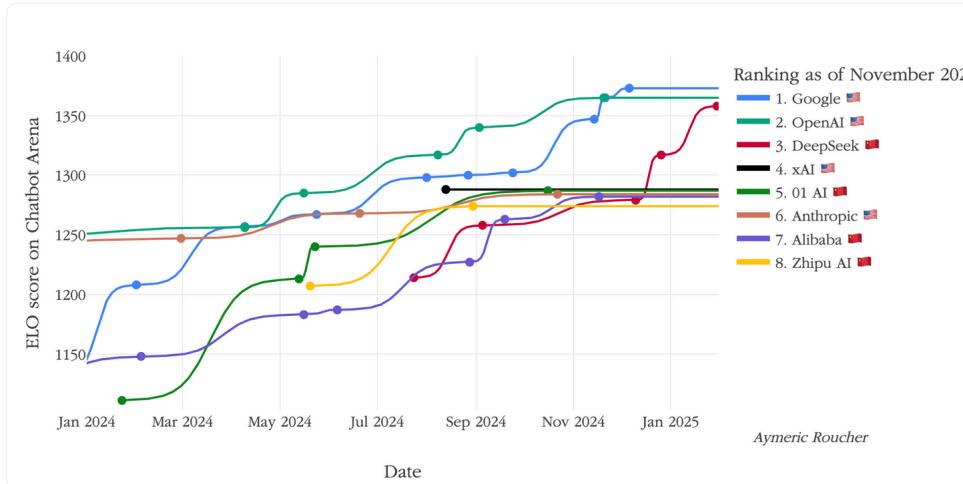
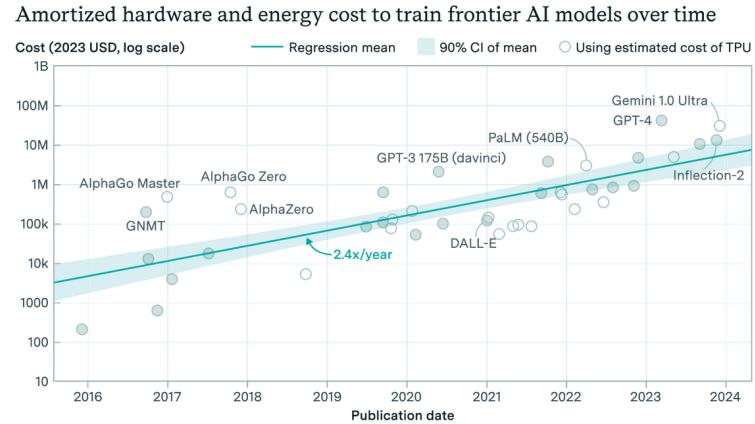
The Case of LLMs



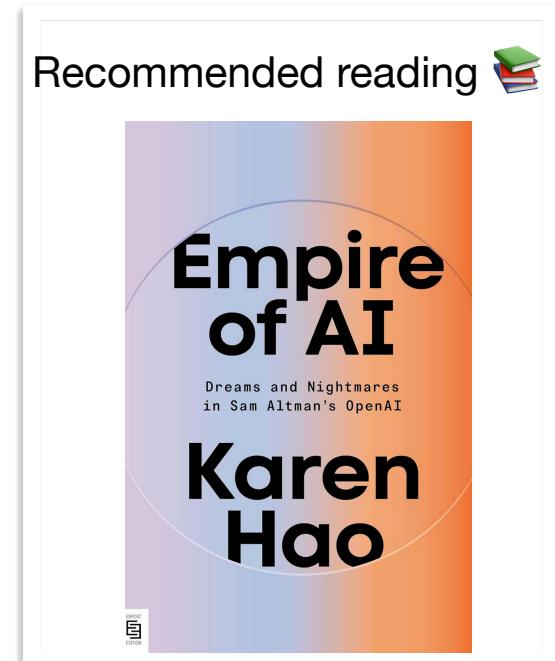
- Currently an arm race
 - One world with N actors developing N models and sharing less and less over time
 - Scaling compute efficiency (the bitter lesson from Sutter)
 - Algorithmic progress: ~4x/year? <https://www.darioamodei.com/post/on-deepseek-and-export-controls>
 - Large ecological cost and human cost (safety annotations done by South developing countries)
- Alternate model: companies & universities sharing open-weight models and sometimes fully open models



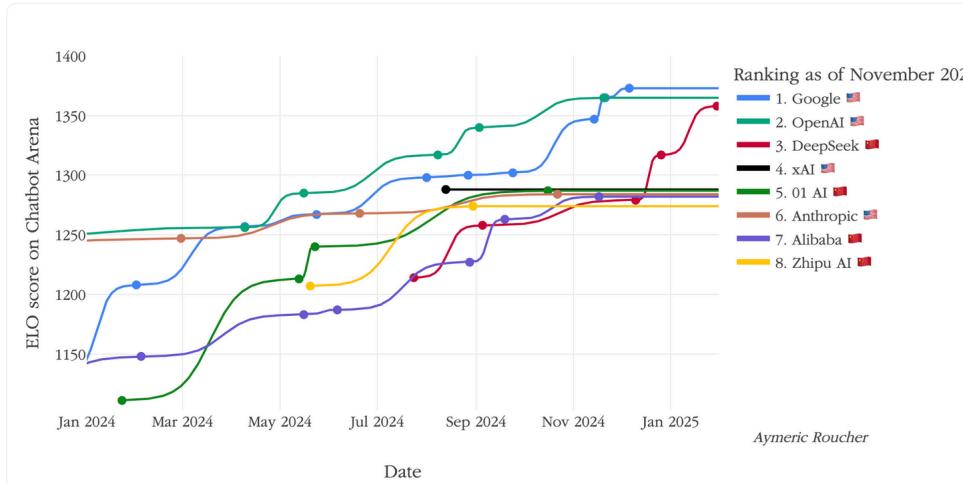
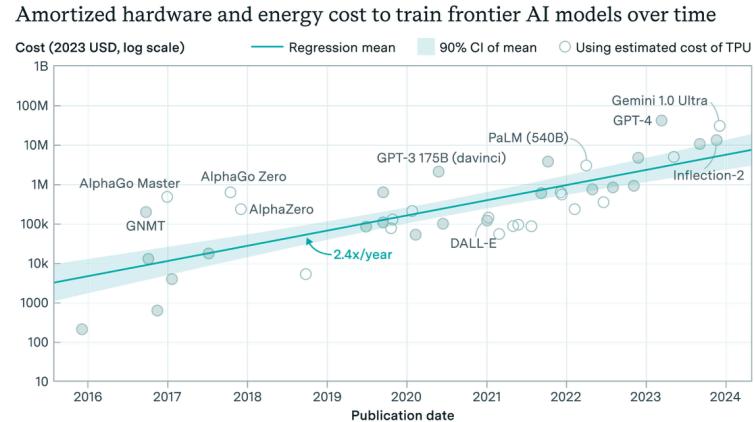
The Case of LLMs



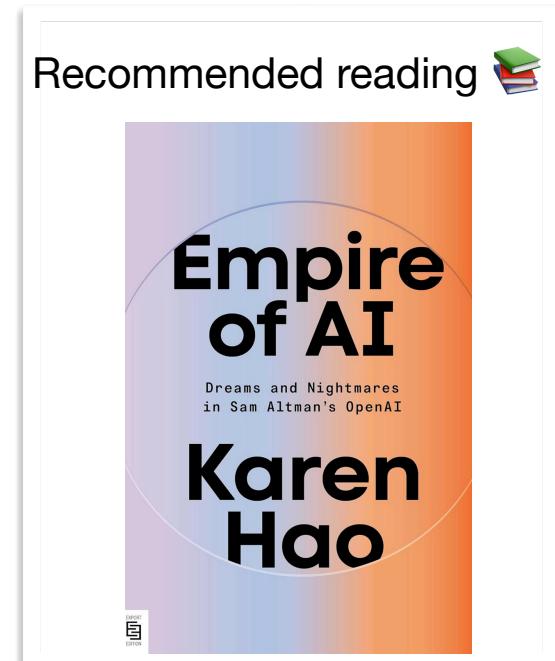
- Currently an arm race
 - One world with N actors developing N models and sharing less and less over time
 - Scaling compute efficiency (the bitter lesson from Sutter)
 - Algorithmic progress: ~4x/year? <https://www.darioamodei.com/post/on-deepseek-and-export-controls>
 - Large ecological cost and human cost (safety annotations done by South developing countries)
- Alternate model: companies & universities sharing open-weight models and sometimes fully open models
 - Open-weights: Meta, Google, Mistral, ...



The Case of LLMs



- Currently an arm race
 - One world with N actors developing N models and sharing less and less over time
 - Scaling compute efficiency (the bitter lesson from Sutter)
 - Algorithmic progress: ~4x/year? <https://www.darioamodei.com/post/on-deepseek-and-export-controls>
 - Large ecological cost and human cost (safety annotations done by South developing countries)
- Alternate model: companies & universities sharing open-weight models and sometimes fully open models
 - Open-weights: Meta, Google, Mistral, ...
 - Fully open models: Stanford, AllenAI institute, Apple ...



A Case of Openness

Some of humanity largest projects

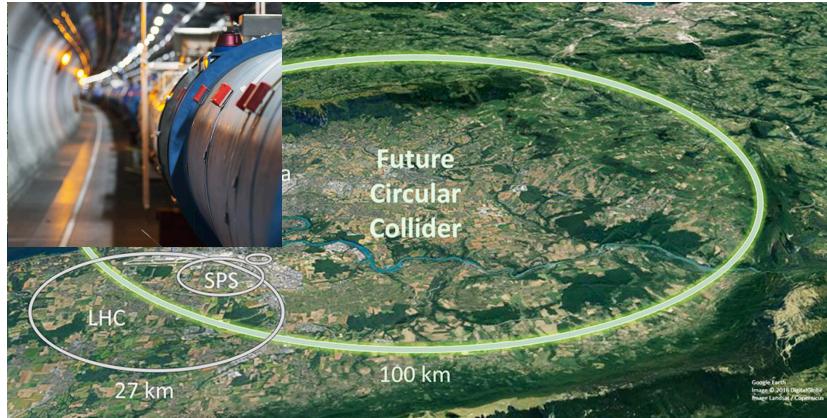
A Case of Openness

Some of humanity largest projects

LHC: \$5 Billion, 23 countries

A Case of Openness

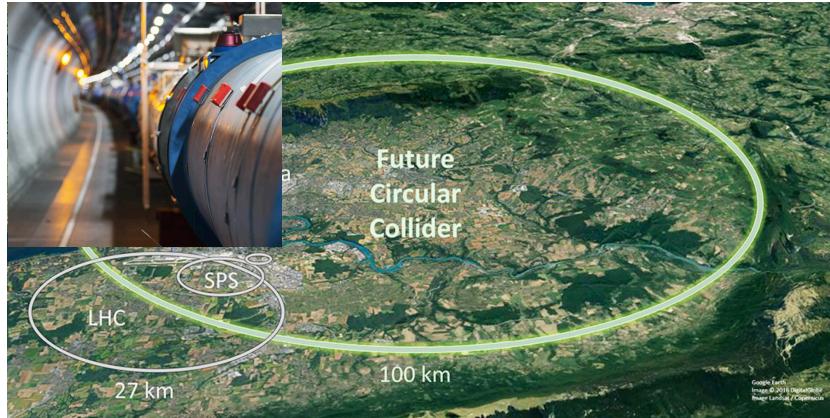
Some of humanity largest projects



LHC: \$5 Billion, 23 countries

A Case of Openness

Some of humanity largest projects

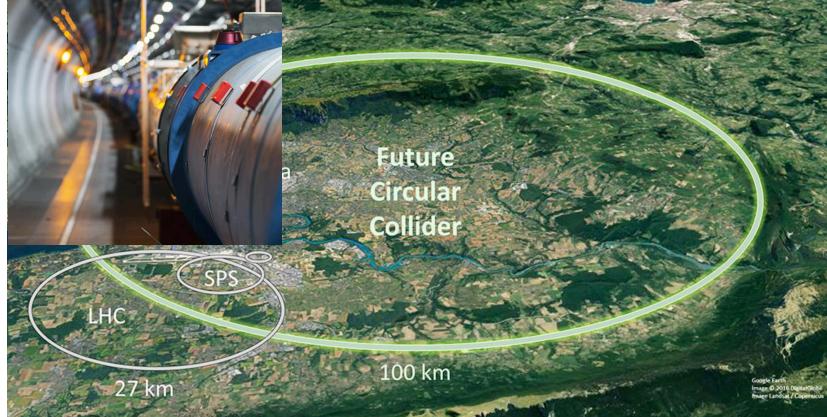


LHC: \$5 Billion, 23 countries

Hubble \$16 billion, 11 countries

A Case of Openness

Some of humanity largest projects

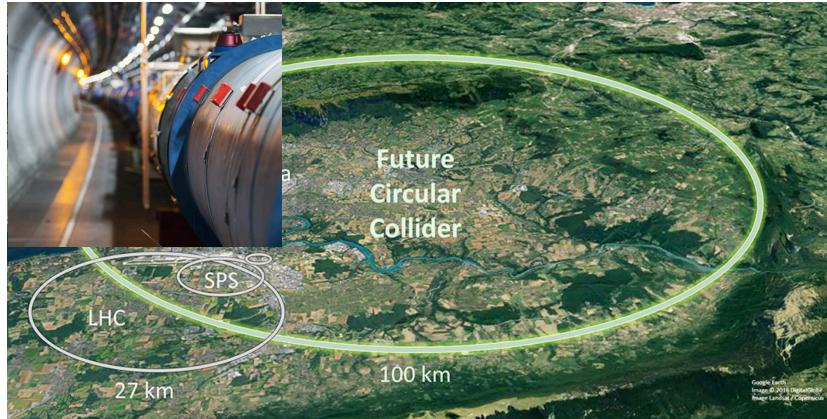


LHC: \$5 Billion, 23 countries

Hubble \$16 billion, 11 countries

A Case of Openness

Some of humanity largest projects



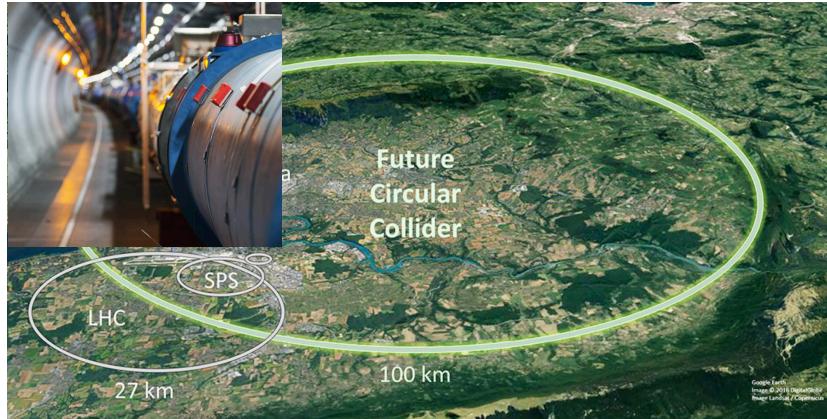
LHC: \$5 Billion, 23 countries

Hubble \$16 billion, 11 countries

ITER: \$45 Billion, 35 countries

A Case of Openness

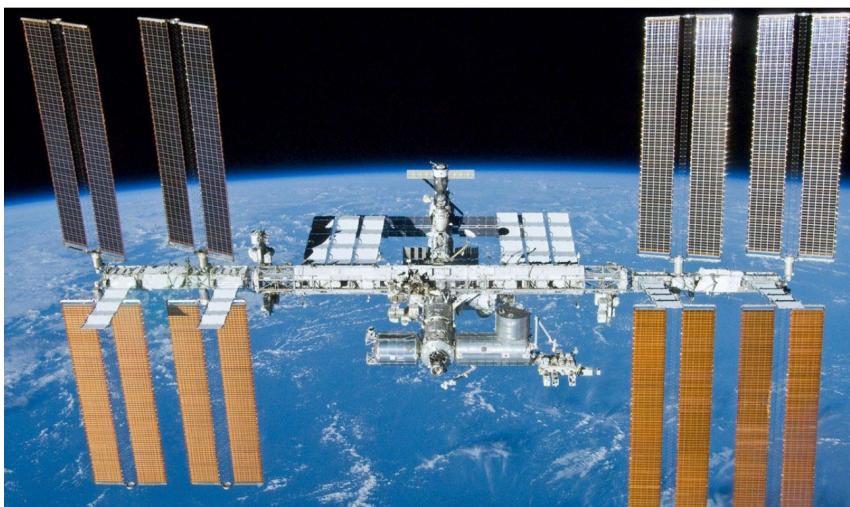
Some of humanity largest projects



LHC: \$5 Billion, 23 countries

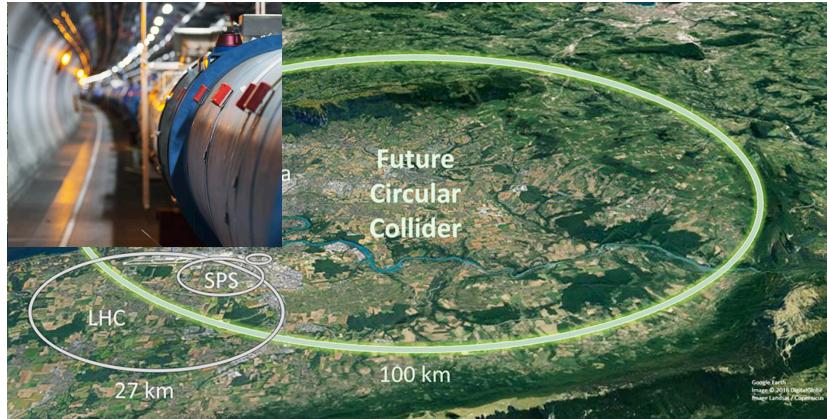
Hubble \$16 billion, 11 countries

ITER: \$45 Billion, 35 countries



A Case of Openness

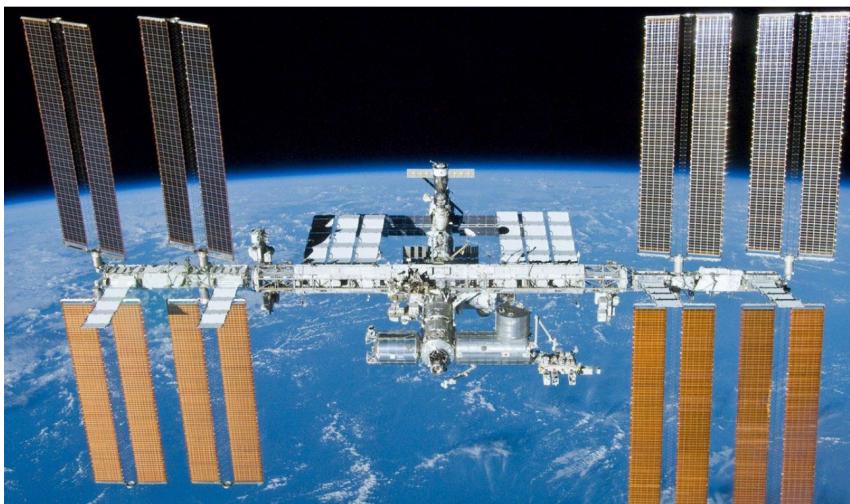
Some of humanity largest projects



LHC: \$5 Billion, 23 countries

Hubble \$16 billion, 11 countries

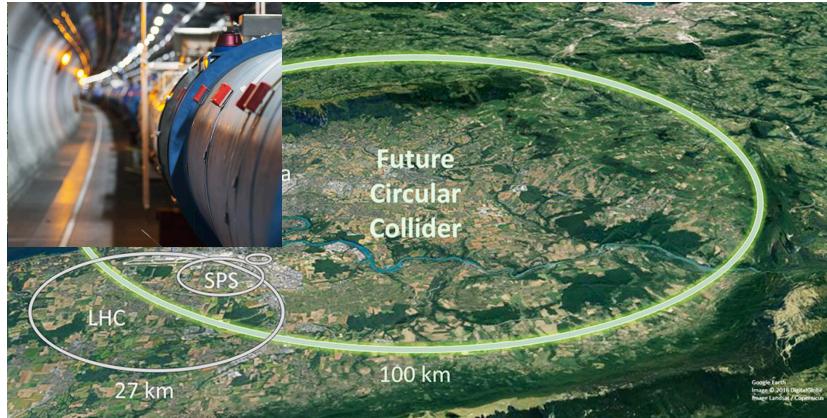
ITER: \$45 Billion, 35 countries



ISS: \$100 Billion, 16 countries

A Case of Openness

Some of humanity largest projects

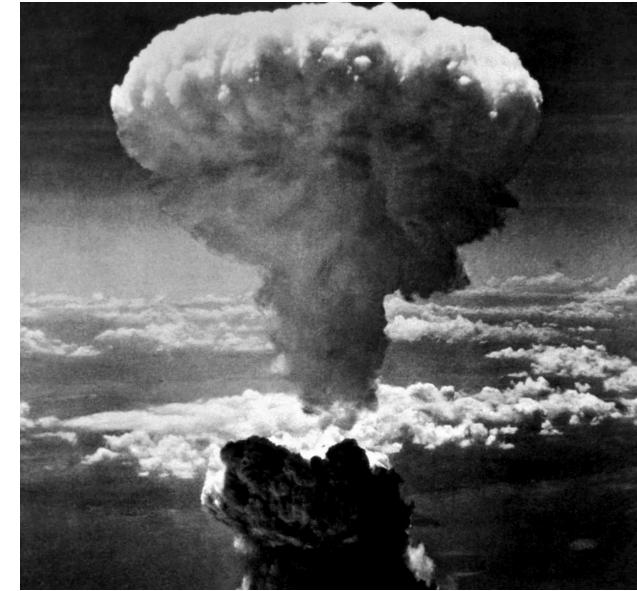


LHC: \$5 Billion, 23 countries

Hubble \$16 billion, 11 countries

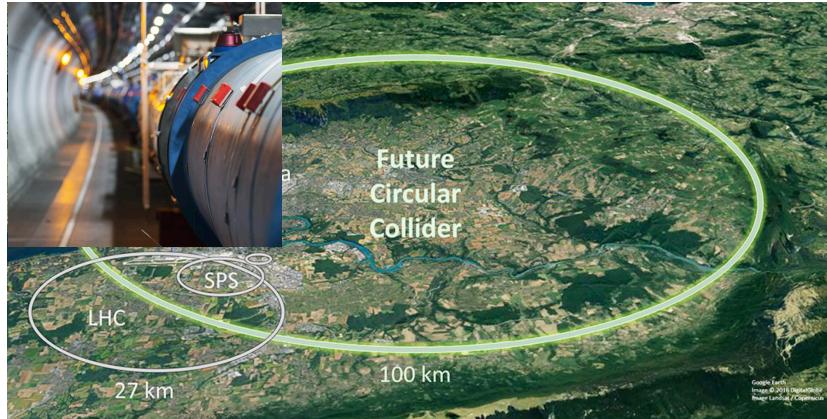
ITER: \$45 Billion, 35 countries

ISS: \$100 Billion, 16 countries



A Case of Openness

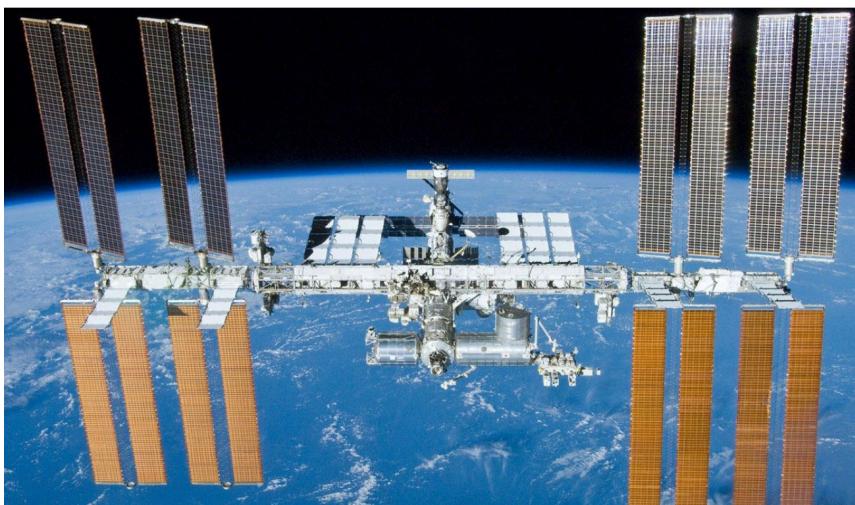
Some of humanity largest projects



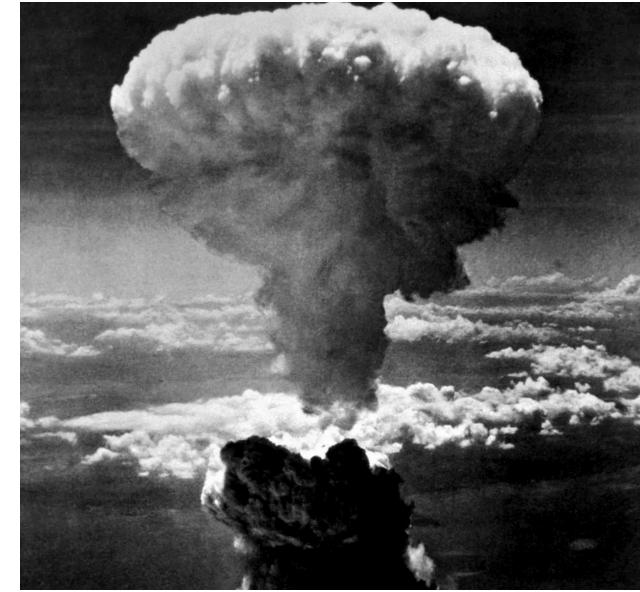
LHC: \$5 Billion, 23 countries

Hubble \$16 billion, 11 countries

ITER: \$45 Billion, 35 countries



ISS: \$100 Billion, 16 countries



Manhattan project \$30 billion, 3 countries

OpenEuroLLM

Universities and Research Organizations

Companies

Co-funded by
the European Union

OpenEuroLLM

- An effort to build multilingual LLMs from scratch by 2028
 - Started in February 2025
 - Fully open: weights & code & data
 - €37.4 million funding. In addition many millions of GPU hours allocated in EuroHPC

Universities and Research Organizations

Companies

ellamind

Co-funded by
the European Union

OpenEuroLLM

- An effort to build multilingual LLMs from scratch by 2028
 - Started in February 2025
 - Fully open: weights & code & data
 - €37.4 million funding. In addition many millions of GPU hours allocated in EuroHPC
- Just released:
 - Reference 2B models with SOTA performance among fully open models <https://huggingface.co/collections/open-sci/open-sci-ref-001-685905e598be658fbcebff4f>
 - 38 Monolingual 2B LLMs <https://openeurollm.eu/blog/hplt-oellm-38-reference-models>

Universities and Research Organizations

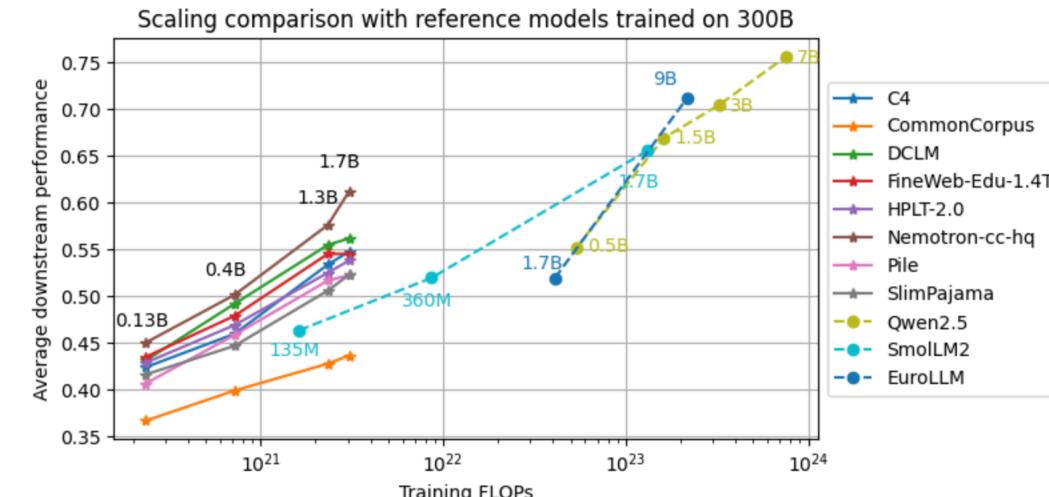
Companies

ellamind

Co-funded by
the European Union

OpenEuroLLM

- An effort to build multilingual LLMs from scratch by 2028
 - Started in February 2025
 - Fully open: weights & code & data
 - €37.4 million funding. In addition many millions of GPU hours allocated in EuroHPC
- Just released:
 - Reference 2B models with SOTA performance among fully open models <https://huggingface.co/collections/open-sci/open-sci-ref-001-685905e598be658fbcebff4f>
 - 38 Monolingual 2B LLMs <https://openeurollm.eu/blog/hplt-oellm-38-reference-models>



Reference analysis training 1.7B models from scratch for different datasets

Universities and Research Organizations

Companies

Co-funded by the European Union

OpenEuroLLM

- An effort to build multilingual LLMs from scratch by 2028
 - Started in February 2025
 - Fully open: weights & code & data
 - €37.4 million funding. In addition many millions of GPU hours allocated in EuroHPC
- Just released:
 - Reference 2B models with SOTA performance among fully open models <https://huggingface.co/collections/open-sci/open-sci-ref-001-685905e598be658fbcebff4f>
 - 38 Monolingual 2B LLMs <https://openeurollm.eu/blog/hplt-oellm-38-reference-models>



Reference analysis training 1.7B models from scratch for different datasets

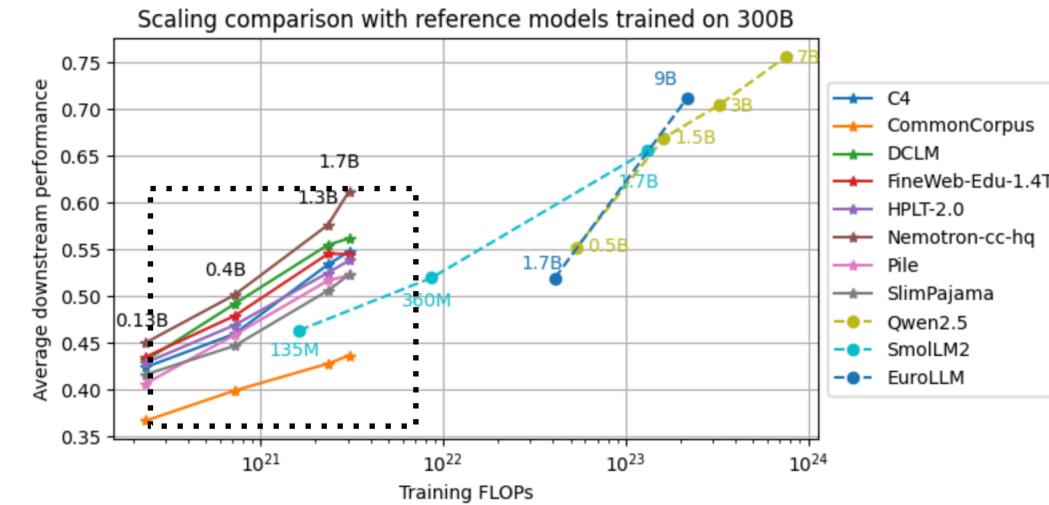
Universities and Research Organizations

Companies

Co-funded by the European Union

OpenEuroLLM

- An effort to build multilingual LLMs from scratch by 2028
 - Started in February 2025
 - Fully open: weights & code & data
 - €37.4 million funding. In addition many millions of GPU hours allocated in EuroHPC
- Just released:
 - Reference 2B models with SOTA performance among fully open models <https://huggingface.co/collections/open-sci/open-sci-ref-001-685905e598be658fbcebff4f>
 - 38 Monolingual 2B LLMs <https://openeurollm.eu/blog/hplt-oellm-38-reference-models>
- Currently hiring 9 ML researchers / engineers at ELLIS! Also internships



Reference analysis training 1.7B models from scratch for different datasets

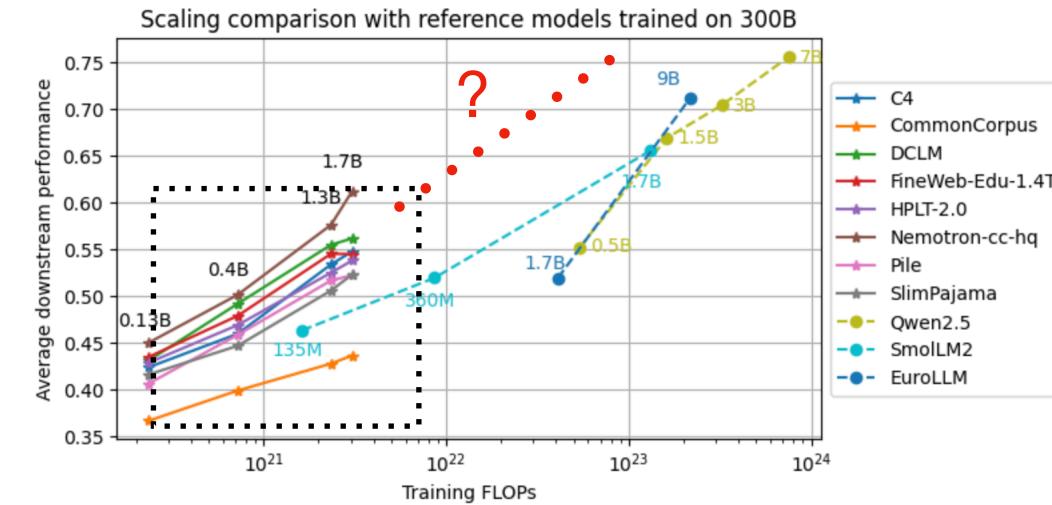
Universities and Research Organizations

Companies

Co-funded by the European Union

OpenEuroLLM

- An effort to build multilingual LLMs from scratch by 2028
 - Started in February 2025
 - Fully open: weights & code & data
 - €37.4 million funding. In addition many millions of GPU hours allocated in EuroHPC
- Just released:
 - Reference 2B models with SOTA performance among fully open models <https://huggingface.co/collections/open-sci/open-sci-ref-001-685905e598be658fbcebff4f>
 - 38 Monolingual 2B LLMs <https://openeurollm.eu/blog/hplt-oellm-38-reference-models>
- Currently hiring 9 ML researchers / engineers at ELLIS! Also internships



Reference analysis training 1.7B models from scratch for different datasets

Universities and Research Organizations

Charles
University

alt-edic
el
DQ

UNIVERSITÄT
TÜBINGEN

Fraunhofer
IAS

BSI
Supercomputing
Center
Centro Nacional de Supercomputación

TU/e
Eindhoven
UNIVERSITY OF
TECHNOLOGY

UNIVERSITY OF
TURKU

Companies

AMD
SILO AI

ellamind

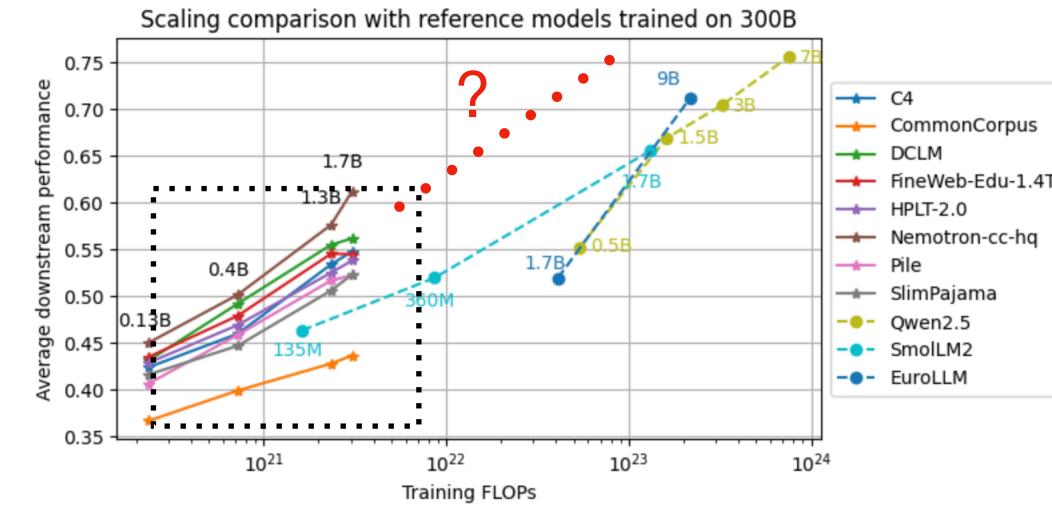
LightOn

prompsit

Co-funded by
the European Union

OpenEuroLLM

- An effort to build multilingual LLMs from scratch by 2028
 - Started in February 2025
 - Fully open: weights & code & data
 - €37.4 million funding. In addition many millions of GPU hours allocated in EuroHPC
- Just released:
 - Reference 2B models with SOTA performance among fully open models <https://huggingface.co/collections/open-sci/open-sci-ref-001-685905e598be658fbcebff4f>
 - 38 Monolingual 2B LLMs <https://openeurollm.eu/blog/hplt-oellm-38-reference-models>
- Currently hiring 9 ML researchers / engineers at ELLIS! Also internships
- Ping me if interested



Reference analysis training 1.7B models from scratch for different datasets

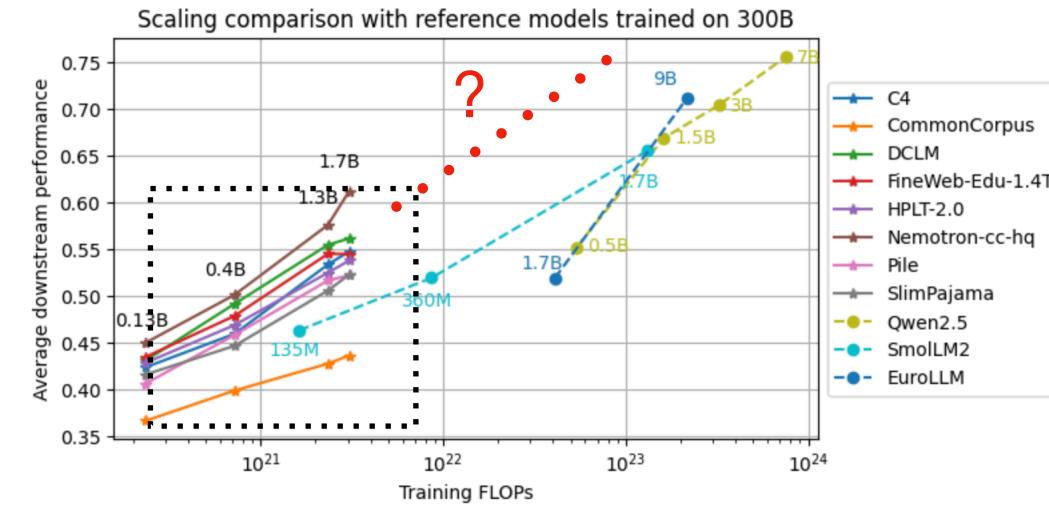
Universities and Research Organizations

Companies

Co-funded by the European Union

OpenEuroLLM

- An effort to build multilingual LLMs from scratch by 2028
 - Started in February 2025
 - Fully open: weights & code & data
 - €37.4 million funding. In addition many millions of GPU hours allocated in EuroHPC
- Just released:
 - Reference 2B models with SOTA performance among fully open models <https://huggingface.co/collections/open-sci/open-sci-ref-001-685905e598be658fbcebff4f>
 - 38 Monolingual 2B LLMs <https://openeurollm.eu/blog/hplt-oellm-38-reference-models>
- Currently hiring 9 ML researchers / engineers at ELLIS! Also internships
- Ping me if interested
- Lots of areas for AutoML in pre-training, post-training, evaluation



Reference analysis training 1.7B models from scratch for different datasets

Universities and Research Organizations

Companies

Co-funded by
the European Union

Any questions or discussion point?