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• Get ideas about research ideas / low-
hanging fruits combining AutoML & LLMs 
evaluations
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LLM Evaluation
Factual Knowledge
What is the capital of Australia?
Who wrote "Pride and Prejudice" and when was it published?
What are the main components of photosynthesis?

Language and Pattern Recognition 
How many R's in strawberry?
What rhymes with "orange" in English?
Can you identify the grammatical error in this sentence: "Me and him went to the 
store"?

Planning and Recommendations 
Can you recommend a two day trip to Hawaii? 
What's a good study schedule for learning Spanish in 3 months? 
Help me plan a vegetarian dinner party for 8 people.

Mathematical and Logical Reasoning 
Can you prove the halting theorem? 
If a train leaves Chicago at 2 PM traveling 60 mph, and another leaves New York at 
3 PM traveling 80 mph, when do they meet? 
Explain the prisoner's dilemma and its implications.

Creative Tasks 
Write a haiku about artificial intelligence. 
Create a short story that begins with "The last library on Earth closed today." 
Generate three marketing slogans for a sustainable clothing brand.

Analysis and Interpretation 
What are the main themes in George Orwell's "1984"? 
Compare and contrast renewable vs. non-renewable energy sources. 
Analyze the potential economic impacts of universal basic income.

Technical Problem-Solving 
Debug this Python code that's supposed to sort a list but isn't working properly. 
Explain how blockchain technology works in simple terms.
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LLM evaluations
Challenges
• Evaluating a generative model that produces open ended text is hard


• Many languages


• Many objectives


• Evaluating a single model with human annotations can costs thousands of dollars 
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Multilingual evaluations
• To evaluate mutilingual models, we need 

multilingual benchmarks

• How would you do it? 🤔

• Issues of language covering

• Issues of automatic translation

• Quick to get started but much worse 
correlation with human judgement

• Cultural & bias of US/Western centric 
benchmark

The Bitter Lesson Learned 
from 2,000+ Multilingual 
Benchmarks. Arxiv 2025.

Number of benchmarks per country
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Evaluations goals

• Many objectives

Each objective may require 
specific benchmarks

How can all the objectives 
be combined?

Copyright

Efficiency

Reasoning

Style

Fairness

Safety

Correctness/helpfulness

…



LLM Evaluations - methods 
overview
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Static zero and few-shot benchmarks

• Prompt an LLM to answer questions either without examples (zero-shot) or 
with some examples (few-shots)

• Cheapest benchmark (just need to do inference)

• An LLM can have a great score at static benchmarks if it has good 
knowledge…

• … but low utility if it cannot handle conversation, is too toxic or refuses to 
answer
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• Static evaluations (MMLU, HellaSWAG and 
others)

• Prompt an LLM to answer questions

• Without examples = zero-shot

• With some examples = few-shots

• Frameworks:
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• light-eval (Hugging-Face)
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How to use Harness

Straightforward to use



Dynamic Evaluations

Mathematical and Logical Reasoning 
Can you prove the halting theorem? 
If a train leaves Chicago at 2 PM traveling 
60 mph, and another leaves New York at 3 
PM traveling 80 mph, when do they meet? 
Explain the prisoner's dilemma and its 
implications.

Analysis and Interpretation 
What are the main themes in George Orwell's 
"1984"? 
Compare and contrast renewable vs. non-
renewable energy sources. 
Analyze the potential economic impacts of 
universal basic income.

Technical Problem-Solving 
Debug this Python code that's supposed to sort a 
list but isn't working properly. 
Explain how blockchain technology works in 
simple terms.

Planning and Recommendations 
Can you recommend a two day trip to Hawaii? 
What's a good study schedule for learning Spanish 
in 3 months? 
Help me plan a vegetarian dinner party for 8 people.

Creative Tasks 
Write a haiku about artificial intelligence. 
Create a short story that begins with "The last library 
on Earth closed today." 
Generate three marketing slogans for a sustainable 
clothing brand.
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uses crowd annotation


• Getting high on this leaderboard is a 
big deal


• Elo-like ratings for selected models that 
mostly agrees with intuitive 
performance

Best open weight model is #6

… Best open weight model with open post-
training receipt is #46

… Best fully open model is #153
Very expensive ~3.5K$ per model of 

human annotation salary


Can we use something cheaper? NB: Those results are from May 2025. The exact ranking may 
have changed but the trend remain.
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• “Smallish" issues:

• Preference for verbose outputs

• Bias of the position: judges have small preference for first position

• Data contamination (small because one can update the benchmarked prompts over time)

• Bigger issues:

• Lack of proper cross validation (same set of models used to select hyperparameters and report results)

• Bias of the judge model (GPT4 tends to prefer GPT4)

• Current SOTA use close model (GPT4) as the judge

• Cost of evaluation (still 20-25$ for Alpaca Eval and Arena hard)



A story of leaderboards



A story of leaderboards
• Leaderboards are important as they help standardize the evaluation process



A story of leaderboards
• Leaderboards are important as they help standardize the evaluation process

• Can help the community to focus on a single direction (Imagenet)



A story of leaderboards
• Leaderboards are important as they help standardize the evaluation process

• Can help the community to focus on a single direction (Imagenet)

• Leaderboards for LLMs:



A story of leaderboards
• Leaderboards are important as they help standardize the evaluation process

• Can help the community to focus on a single direction (Imagenet)

• Leaderboards for LLMs:

• Static:



A story of leaderboards
• Leaderboards are important as they help standardize the evaluation process

• Can help the community to focus on a single direction (Imagenet)

• Leaderboards for LLMs:

• Static:

• OpenLLM leaderboard



A story of leaderboards
• Leaderboards are important as they help standardize the evaluation process

• Can help the community to focus on a single direction (Imagenet)

• Leaderboards for LLMs:

• Static:

• OpenLLM leaderboard

• Helm



A story of leaderboards
• Leaderboards are important as they help standardize the evaluation process

• Can help the community to focus on a single direction (Imagenet)

• Leaderboards for LLMs:

• Static:

• OpenLLM leaderboard

• Helm

• Dynamic



A story of leaderboards
• Leaderboards are important as they help standardize the evaluation process

• Can help the community to focus on a single direction (Imagenet)

• Leaderboards for LLMs:

• Static:

• OpenLLM leaderboard

• Helm

• Dynamic

• ChatbotArena



A story of leaderboards
• Leaderboards are important as they help standardize the evaluation process

• Can help the community to focus on a single direction (Imagenet)

• Leaderboards for LLMs:

• Static:

• OpenLLM leaderboard

• Helm

• Dynamic

• ChatbotArena

• Openrouter



A story of leaderboards
• Leaderboards are important as they help standardize the evaluation process

• Can help the community to focus on a single direction (Imagenet)

• Leaderboards for LLMs:

• Static:

• OpenLLM leaderboard

• Helm

• Dynamic

• ChatbotArena

• Openrouter

• LiveBench LLM



A story of leaderboards
• Leaderboards are important as they help standardize the evaluation process

• Can help the community to focus on a single direction (Imagenet)

• Leaderboards for LLMs:

• Static:

• OpenLLM leaderboard

• Helm

• Dynamic

• ChatbotArena

• Openrouter

• LiveBench LLM

• Dynamic (synthetic)



A story of leaderboards
• Leaderboards are important as they help standardize the evaluation process

• Can help the community to focus on a single direction (Imagenet)

• Leaderboards for LLMs:

• Static:

• OpenLLM leaderboard

• Helm

• Dynamic

• ChatbotArena

• Openrouter

• LiveBench LLM

• Dynamic (synthetic)

• Alpaca-Eval



A story of leaderboards
• Leaderboards are important as they help standardize the evaluation process

• Can help the community to focus on a single direction (Imagenet)

• Leaderboards for LLMs:

• Static:

• OpenLLM leaderboard

• Helm

• Dynamic

• ChatbotArena

• Openrouter

• LiveBench LLM

• Dynamic (synthetic)

• Alpaca-Eval

• Arena-Hard



A story of leaderboards
• Leaderboards are important as they help standardize the evaluation process

• Can help the community to focus on a single direction (Imagenet)

• Leaderboards for LLMs:

• Static:

• OpenLLM leaderboard

• Helm

• Dynamic

• ChatbotArena

• Openrouter

• LiveBench LLM

• Dynamic (synthetic)

• Alpaca-Eval

• Arena-Hard

• Translated versions



A story of leaderboards
• Leaderboards are important as they help standardize the evaluation process

• Can help the community to focus on a single direction (Imagenet)

• Leaderboards for LLMs:

• Static:

• OpenLLM leaderboard

• Helm

• Dynamic

• ChatbotArena

• Openrouter

• LiveBench LLM

• Dynamic (synthetic)

• Alpaca-Eval

• Arena-Hard

• Translated versions



A story of leaderboards
• Leaderboards are important as they help standardize the evaluation process

• Can help the community to focus on a single direction (Imagenet)

• Leaderboards for LLMs:

• Static:

• OpenLLM leaderboard

• Helm

• Dynamic

• ChatbotArena

• Openrouter

• LiveBench LLM

• Dynamic (synthetic)

• Alpaca-Eval

• Arena-Hard

• Translated versions



A story of leaderboards
• Leaderboards are important as they help standardize the evaluation process

• Can help the community to focus on a single direction (Imagenet)

• Leaderboards for LLMs:

• Static:

• OpenLLM leaderboard

• Helm

• Dynamic

• ChatbotArena

• Openrouter

• LiveBench LLM

• Dynamic (synthetic)

• Alpaca-Eval

• Arena-Hard

• Translated versions

We will focus on those
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• Created in 2022 by HuggingFace

• Average scores on a list of static benchmarks (list got updated 2 times)

• Models evaluated for free on Hugging Face cluster 🙏

• Widely popular for some time but ended in April 2025

• No automatic check for contamination

• Top solution could fine-tune arbitrarily on the test set

• Try to fix and then abandon it

• Still a massive compute gain to the community 13K models were 
evaluated for free for ~3 million GPU hours

• All data publicly available

Average accuracy over time
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TabArena
Tabular leaderboard
• Live leaderboard for tabular methods: http://tabarena.ai


• Joint work with Nick Erickson, Lennart Purucker, Andrej Tschalzev, David Holzmüller, Prateek Mutalik Desai, 
David Salinas, Frank Hutter


• Very easy to host your leaderboard on Gradio/Hugging Face: 


• check out https://pypi.org/project/gradio-leaderboard/

http://tabarena.ai
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Evaluation
Wrapping up

• Evaluating LLM is hard:

• Many languages

• Many objectives

• Cost can be high

• Tradeoff must be made, for instance cost vs accuracy

• Still early days, lot of low hanging fruits

• How to achieve good tradeoffs between objectives

• Optimal sampling strategies

• Better ways to improve low-resource languages & provide less culturally biased benchmarks

• Dire need of trusted high-quality leaderboards
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• Can we select among the 500+ models based 
on the prompt?

• Some model may be better on coding, for 
simple prompt (2+2?) simple/cheaper models 
can be used

• Companies/services: Not Diamond startup + 
Open Router

• Easy connection with AutoML: transfer-
learning/meta-learning/portfolio

• Low hanging fruit! 🍇

Prompt-to-Leaderboard. Arxiv 2025.

• Predict model ranks based on 
prompt features


• Got top model on CB arena


• Private dataset 😢
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Instruction tuning quick recap
• SFT (self-supervised-training) step:

• Humans annotate instructions and chat assistant possible answers

• Model is trained on next token prediction on the generated dataset

• Instruction tuning step:

• Generate two different completions for each instruction 

• Ask human to say which generation is better

• Online RL (PPO)


• Learn reward model to predict user preference


• Optimize model with PPO or other RL 
algorithm with the reward model


• Regularize toward initial models

• Offline RL (DPO)


• Optimize model directly to predict human 
preferences


• Also regularize toward initial model

• Others


• Sample N completion and pick the one 
with highest reward from a reward models


• SFT on best answer from annotators


• …

DPO [Rafailov 2023]

Instruction: write me a poem about Jazz. 

Completion 1: 


Jazz sucks, listen to rap, yo.
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 is always on the 
Pareto front

j

i = argmini∈[n]yij
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• 🤔 We need to sort to discard the bottom half of configurations, how can we sort if we have multiple objectives?
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and starts evaluating them for 1/8 of 
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At exponentially spaced 
checkpoint size, keep only top 50%, 

25%, 12.5% configurations

When a configuration is 
stopped, sample a new one at 

random and start evaluating it for 
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💡Non-dominated sort allows to sort even 
when we have multiple objectives

• Typically, models are trained incrementally: can we stop bad configuration early?

• Early results (epochs) can be used to stop bad runs (early stopping)
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• Compute the Pareto front of , break ties with an heuristicy∖𝒫(y)
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Extending Multifidelity to multi-objective

Multi-objective Asynchronous Successive Halving [Schmucker 2021]

Non-dominated sort, works 
much better than 

scalarization!

Bag of Baselines for Multi-objective Joint Neural Architecture Search and Hyperparameter Optimization [Guererro Viu 2021]

Non-dominated sort, works 
well in general…
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• Pros: cheaper than human annotations & can evaluate open-ended text
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• Can be used for model selection, leaderboard…

• Our Goal: Provide high-accuracy, low-cost LLM judges with open models
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• Prompt:

• Output format: 5 options 

• 3 booleans to ask LLM to provide

• answer: its own answer to the instruction as proposed

• example: an example of a judgement

• explanation: its explanation on the given preference

• Boolean to use json formatting 

• Inference hyperparameters: 

• 7 open-weight options (Llama3, Qwen2.5, Gemma 2 at different size)

• 4 temperatures

• Boolean to average predictions with both orders
In total we have  prompts and 

 possible judges


😱 Evaluating with Spearman correlation in brute 
force would cost $2M (!)

5 × 24 = 80
7 × 4 × 80 × 2 = 4480

Tuning LLM judges
Search space
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LLM as a judge
Hyperparameter optimization

• Multiobjective: accuracy & cost per evaluation

• Currently configurations are manually selected and 
evaluated… 

• We could tune the judge with multi-objective 
optimization! 

• … but evaluating a single judge configuration costs 
~370$ 🥶 (need to evaluate many models to compute 
Spearman correlation)

• Our approach:

• 1. Identify a cheaper and better metric than Spearman 
corr.

• 2. Use a multifidelity-multiobjective method to tune 
configurations 

Performance of some judge 
hyperparameters for Alpaca Eval

Chain of thought improves 
correlation but increases cost

Llama3-70B instead of GPT4-turbo 
worsen correlation but improves cost
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How to compare judges?
Identifying a better metric

• Option 1: Spearman-correlation

• 1. Evaluate a list of LLMs on a list of prompts

• 2. Call LLM judge to compare with baseline 
(GPT-4) on all annotations

• 3. Compute winrate

• 4. Measure Spearman correlation with Chatbot 
Arena ranking

• Option 2: Human-agreement

• Collect list of annotated preferences by human

• Call LLM judge to annotate preference

• Compare LLM judge preference with human

• How both options signal to noise ratio scale with 
the number of annotations?

Human agreement 
has much better 
signal to noise 

ratio!

# params of LLM judge Cant distinguish 32B and 72B

Can distinguish 32B and 72B

Noise to signal ratio:
CV = σ/μ * 100



Tuning LLM judges
Multifidelity & multiobjective optimization



Tuning LLM judges
Multifidelity & multiobjective optimization

• Two objectives: human-agreement & cost per 
annotation



Tuning LLM judges
Multifidelity & multiobjective optimization

• Two objectives: human-agreement & cost per 
annotation

• Multi-fidelity multi-objective to the rescue!



Tuning LLM judges
Multifidelity & multiobjective optimization

• Two objectives: human-agreement & cost per 
annotation

• Multi-fidelity multi-objective to the rescue!

• Evaluate all 4480 configurations on 400 
instructions



Tuning LLM judges
Multifidelity & multiobjective optimization

• Two objectives: human-agreement & cost per 
annotation

• Multi-fidelity multi-objective to the rescue!

• Evaluate all 4480 configurations on 400 
instructions

• Pick top 1200 and evaluate on 1200 
instructions



Tuning LLM judges
Multifidelity & multiobjective optimization

• Two objectives: human-agreement & cost per 
annotation

• Multi-fidelity multi-objective to the rescue!

• Evaluate all 4480 configurations on 400 
instructions

• Pick top 1200 and evaluate on 1200 
instructions

• Pick again top 400 and evaluate on 3548 
Instructions



Tuning LLM judges
Multifidelity & multiobjective optimization

• Two objectives: human-agreement & cost per 
annotation

• Multi-fidelity multi-objective to the rescue!

• Evaluate all 4480 configurations on 400 
instructions

• Pick top 1200 and evaluate on 1200 
instructions

• Pick again top 400 and evaluate on 3548 
Instructions

• Use Non dominated sort to determine top 
configurations



Tuning LLM judges
Multifidelity & multiobjective optimization

• Two objectives: human-agreement & cost per 
annotation

• Multi-fidelity multi-objective to the rescue!

• Evaluate all 4480 configurations on 400 
instructions

• Pick top 1200 and evaluate on 1200 
instructions

• Pick again top 400 and evaluate on 3548 
Instructions

• Use Non dominated sort to determine top 
configurations



Tuning LLM judges
Multifidelity & multiobjective optimization

• Two objectives: human-agreement & cost per 
annotation

• Multi-fidelity multi-objective to the rescue!

• Evaluate all 4480 configurations on 400 
instructions

• Pick top 1200 and evaluate on 1200 
instructions

• Pick again top 400 and evaluate on 3548 
Instructions

• Use Non dominated sort to determine top 
configurations



Results of top judges
How are tuned judges from open-weights compared to previous approaches?

• How are tuned judges from open-weights compared to previous approaches?


• With tuning, we can outperform close-weight and fine-tune judges while 
having a much lower cost



Results of top judges
How are tuned judges from open-weights compared to previous approaches?

• How are tuned judges from open-weights compared to previous approaches?


• With tuning, we can outperform close-weight and fine-tune judges while 
having a much lower cost

LMsys test set



Results of top judges
How are tuned judges from open-weights compared to previous approaches?

• How are tuned judges from open-weights compared to previous approaches?


• With tuning, we can outperform close-weight and fine-tune judges while 
having a much lower cost

LMsys test set PandaLM test set



Results of top judges
How are tuned judges from open-weights compared to previous approaches?

• How are tuned judges from open-weights compared to previous approaches?


• With tuning, we can outperform close-weight and fine-tune judges while 
having a much lower cost

LMsys test set PandaLM test set ArenaHard
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Analysing judge performance
What hyperparameter/prompt works best?

• What is working best for LLM judges?
Format used for output is very 

important.
Large temperature hurts 

performance (past a given point).

Small LLMs struggle to understand 
the prompt when provided an 

example.

Asking explanation or answer hurts 
performance.

How many 
hyperparameters in 

the top 100 from 
the 4480 judges?
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Prompt generalization

Correlation between rank of prompt 
configurations across models

High correlation => best prompt 
relatively stable across models

Correlation higher when model sizes 
and family are close
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Conclusion

• LLM judges can be tuned at a reasonable cost

• Tuning hyperparameters allows to match or outperform previous approaches 

• while diminishing the cost significantly 

• … and using only open-weight models
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Next steps / future work

• AutoML: tabular benchmark released https://github.com/geoalgo/judgetuning 
(together with code to reproduce results)


• Ensemble? Portfolio? Model-based optimizers?

Pretrained model Instruction-tuned model

Optimize instruction tuning hyperparameters 
(DPO, learning-rate) that maximizes judge 
ratings

Use open-weight models to evaluate 
OpenEuroLLM instruction tuned models

Better AutoML for judges

https://github.com/geoalgo/judgetuning
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ISS: $100 Billion, 16 countries

LHC: $5 Billion, 23 countries Hubble $16 billion, 11 countries

ITER: $45 Billion, 35 countries

Some of humanity largest projects
A case of openness

Manhattan project $30 billion, 
3 countries
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The case of LLMs

• Currently an arm race

• One world with N actors developing N models and sharing less and less over time

• Scaling compute efficiency (the bitter lesson from Sutter)

• Algorithmic progress: ~4x/year? https://www.darioamodei.com/post/on-deepseek-and-export-
controls

• Alternate model: companies & universities sharing open-weight models and sometimes fully open models

• Open-weights: Meta, Google, Mistral, …

• Fully open models: Stanford, AllenAI institute, Apple …
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Collaboration for profit is possible!

• AI rely on high-performance GPUs which relies on one of the 
biggest industrial collaboration in history!

• What is this technology? 🤔

• Extreme Ultraviolet (EUV) is the core technology powering AI

• EUV development costed ~$14-21 billion and involved many 
companies and countries over decades of research

• Currently built only by ASML, an EU company 🇪🇺🇳🇱🌷

• Key geopolitical stake

It prints features of just a few nanometers; it is the 
key technology required to build GPU chips

An EUV machine, $380 million

Recommended reading 📚
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• An effort to build multilingual LLMs from scratch by 2028


• Started in February 2025


• Fully open: weights & code & data


• €37.4 million funding. In addition many millions of GPU hours in 
EuroHPC

• Will release soon reference 1.7B models with SOTA performance 
among fully open models

• Currently hiring 9 ML researchers / engineers at ELLIS! Also 
internships 👋

• Ping me and Aaron if interested 🤗

• Lots of areas for AutoML in pre-training, post-training, evaluation 🎉 

Reference analysis training 1.7B models from 
scratch for different datasets

?
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Conclusion

• LLM evaluation is an open problem


• Fundamental difficulty to evaluate open-ended answers


• Need to handle many dimensions (objectives, languages, cost)

• AutoML has a lot to say


• Many objectives => multiobjective optimization


• Costly => 


• Multifidelity optimization


• Transfer/meta-learning, portfolio, …

• AutoML all the way for evaluations (LLM-judge), instruction tuning and maybe pretraining?



Questions


