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A common use case
• Multiobjective optimization: 

• Given an expensive blackbox function  with  objectives, approximate the 
Pareto front

y = f(x) ∈ ℝd d

• Use as few evaluation call as possible given that  is expensive!f

• It allows to provide optimal choices for a posteriori decisions (in the least amount of queries)

• Useful when we dont know the constraint in advance!

• Recurring application example in ML:

• LLM or CV model that trades accuracy to run on a phone with a reasonable latency

• Reasonable latency is hard to give in advance, it depends on the accuracy loss => a posteriori 
decision

• Typical-metrics considered:

• Accuracy

• Latency

• Fairness

• Memory consumption

• Energy consumption, …
Computer vision models in GluonCV. 


Accuracy and throughput is displayed.

Which model can run 
on your phone?
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Multiobjective landscape

• Our focus for this lecture is on blackbox multiobjective optimization


• Related areas:


• Multiobjective RL: optimize an RL for multiple objective (eg a robot that 
minimize rewards and keep energy down)


• Constrained optimization when constraint is known a priori (optimise while 
penalizing the constraint violation)


• Multivariate analysis (Time series forecasting, causal analysis …)
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• Problem formation and evaluations metrics ~10 min

• Optimization Methods ~30 min

• Theoretical foundations ~5 min

• Applications ~15 min

• Code and library ~5 min 

• Conclusion



Problem formation and 
evaluations metrics
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Hyperparameter optimization
Recap for single objective case

• Hyperparameter simple setting, find the best 
hyperparameter of f(x) ∈ ℝ

• x* = argminx∈𝒳 f(x)

•  can be the accuracy obtained after training 
a neural network with hyperparameter 
f(x)

x

•  is assumed to be expensive, we want as 
little sample as possible
f(x)

Wistuba and Grabocka. Meta-Learning 
for Hyperparameter Optimization 2023

An example of a search space 𝒳

For instance, x* = [ViT,0.2,Adam,10−4]How to extend to multiple objectives?
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• Given a function  with  input dimensions and  objectivesf : ℝm → ℝd m d

• Approximate the Pareto front in the least amount of iterations

• We need a notion of distance to quantify how far we are from the optimal 
solution to be able to formulate an optimization problem!

• The hypervolume is the most common metric
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Hypervolume
Measuring multiobjective performance

• Define a reference point r ∈ ℝd

• Hypervolume

•  = “volume between  and the Pareto front ”HVr(y) r 𝒫(y) ⊂ ℝd

• HVr(y) = 𝒱({q ∈ ℝd |∃p ∈ y, p ⪯ q and q ⪯ r})
A tutorial on multiobjective optimization: fundamentals and evolutionary methods [Emmerich  2018]

2D 3D
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Multiobjective goal

• Given an expensive blackbox function  with  objectives, 
approximate the Pareto front with as few samples as possible

y = f(x) ∈ ℝd d

• e.g. optimize (x1, …, xn) = argmax(x1,…,xn)∈ℝmHV({f(x1), …, f(xn)})

• The reference point is often chosen to be  after having normalised the 
objectives in 

1d ∈ ℝd

[0,1]

• Sometimes we know the Pareto front (or we estimate after having run many 
optimizers), we can then instead say that we minimize the hypervolume error: 

HV(𝒫( f )) − HV({f(x1), …, f(xn)})
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Objective scaling transformation

• We typically want objectives to be comparable and at a similar scale

• Several normalisation are often used for the objectives :y ∈ ℝn×d

• Min-max normalisation: z =
y − min(y)

max(y) − min(y)
∈ [0,1]

• CDF/rank/copula normalisation:  where  is the empirical CDFz = Fy(y) F

This transformation makes the comparisons 
invariant through any monotonic change! 

Neat 👍 [Binois 2020]
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Optimization Methods

• Recall that we want to maximize the Hypervolume under a minimum amount of function 
evaluations

• (x1, …, xn) = argmax(x1,…,xn)∈ℝmHV({f(x1), …, f(xn)})

• Main approaches:

• Scalarization: scalarize objectives and apply single objective method

• Evolutionary Algorithms

• Bayesian Optimization

• Preference based

• Others: Population Based Training, Multi-fidelity

🤔 Which method could you think of?
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Optimization Methods - scalarization
• Simplest scalarization:  where  is a weight vector to be 

defined (for instance )

g(x) =
d

∑
i=1

wi fi(x) = wTf(x) ∈ ℝ w ∈ ℝd

wi = 1∀i

🙈 We can reach the 
whole Pareto front if its 

convex!

A tutorial on multiobjective optimization: fundamentals 
and evolutionary methods [Emmerich  2018]

🤔 What is a limitation 
of this method? 😰 No set of weights can 

reach this point!

We can vary the 
weights and obtain 
different part of the 

Pareto front
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The shape of Pareto fronts
• In multiobjective optimization, one often optimize for an “accuracy” objective 

and another “model-size” objective (latency, number of parameters, …)

• In this case, the Pareto front is convex Computer vision models plotted by 
accuracy ( ) and throughput ( )↑ ↑

If we decrease our constrain on 
throughput starting from the 
maximum throughput, the 

accuracy drops slowly initially

Conversely, if we release the 
constrain from the highest 

throughput, we get large gains

🤔 But linear scalarization is still 
limiting, need to find weights, 

no general guarantee
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Some other scalarizations

• Chebychev scalarization: max
i=1..d

wi | fi(x) − z*i |

• 👍 Can model concave Pareto front

• 👎 No regret bound

• Golovin scalarization: min
i=1..d

max(0, fi(x)/wi))d

• 👍 Regret bound

• 👎 Needs to be able to bound the objectives

Chebychev scalarization. A tutorial on multiobjective 
optimization: fundamentals and evolutionary methods 

[Emmerich  2018]
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Evolutionary multiobjective optimization

• Applies/extend Evolutionary Algorithms (EA)

• Three main approaches:

• Pareto based (NSGA-II): applies EA and uses non-dominated sort to sort 
candidates

• Indicator based (SMS-EMOA): optimises a set indicator (for instance 
hypervolume), for instance removes the solution with the smallest 
hypervolume contribution from the population

• Decomposition based (MOEA/D): decomposes into subregions of the Pareto 
front, for each applies different scalarization parameters



Non dominated sort



Non dominated sort
• Assume we want to minimize all objectives



Non dominated sort
• Assume we want to minimize all objectives

• How to rank  observations  when we have  objectives?n y ∈ ℝn×d d > 1



Non dominated sort
• Assume we want to minimize all objectives

• How to rank  observations  when we have  objectives?n y ∈ ℝn×d d > 1

• Non dominated sort (aka onion sort):



Non dominated sort
• Assume we want to minimize all objectives

• How to rank  observations  when we have  objectives?n y ∈ ℝn×d d > 1

• Non dominated sort (aka onion sort):

• Compute the Pareto front of , break ties with an heuristicy



Non dominated sort
• Assume we want to minimize all objectives

• How to rank  observations  when we have  objectives?n y ∈ ℝn×d d > 1

• Non dominated sort (aka onion sort):

• Compute the Pareto front of , break ties with an heuristicy



Non dominated sort
• Assume we want to minimize all objectives

• How to rank  observations  when we have  objectives?n y ∈ ℝn×d d > 1

• Non dominated sort (aka onion sort):

• Compute the Pareto front of , break ties with an heuristicy

Break ties between [1, 7]



Non dominated sort
• Assume we want to minimize all objectives

• How to rank  observations  when we have  objectives?n y ∈ ℝn×d d > 1

• Non dominated sort (aka onion sort):

• Compute the Pareto front of , break ties with an heuristicy

• Compute the Pareto front of , break ties with an heuristicy∖𝒫(y)

Break ties between [1, 7]



Non dominated sort
• Assume we want to minimize all objectives

• How to rank  observations  when we have  objectives?n y ∈ ℝn×d d > 1

• Non dominated sort (aka onion sort):

• Compute the Pareto front of , break ties with an heuristicy

• Compute the Pareto front of , break ties with an heuristicy∖𝒫(y)

Break ties between [1, 7] Break ties between [9, 16]



Non dominated sort
• Assume we want to minimize all objectives

• How to rank  observations  when we have  objectives?n y ∈ ℝn×d d > 1

• Non dominated sort (aka onion sort):

• Compute the Pareto front of , break ties with an heuristicy

• Compute the Pareto front of , break ties with an heuristicy∖𝒫(y)

• Heuristic choices aims at selecting a subset with a good coverage:

Break ties between [1, 7] Break ties between [9, 16]



Non dominated sort
• Assume we want to minimize all objectives

• How to rank  observations  when we have  objectives?n y ∈ ℝn×d d > 1

• Non dominated sort (aka onion sort):

• Compute the Pareto front of , break ties with an heuristicy

• Compute the Pareto front of , break ties with an heuristicy∖𝒫(y)

• Heuristic choices aims at selecting a subset with a good coverage:

• Crowding distance 

Break ties between [1, 7] Break ties between [9, 16]



Non dominated sort
• Assume we want to minimize all objectives

• How to rank  observations  when we have  objectives?n y ∈ ℝn×d d > 1

• Non dominated sort (aka onion sort):

• Compute the Pareto front of , break ties with an heuristicy

• Compute the Pareto front of , break ties with an heuristicy∖𝒫(y)

• Heuristic choices aims at selecting a subset with a good coverage:

• Crowding distance 

• Epsilon-net
Break ties between [1, 7] Break ties between [9, 16]



Non dominated sort
• Assume we want to minimize all objectives

• How to rank  observations  when we have  objectives?n y ∈ ℝn×d d > 1

• Non dominated sort (aka onion sort):

• Compute the Pareto front of , break ties with an heuristicy

• Compute the Pareto front of , break ties with an heuristicy∖𝒫(y)

• Heuristic choices aims at selecting a subset with a good coverage:

• Crowding distance 

• Epsilon-net

• … Break ties between [1, 7] Break ties between [9, 16]
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NSGA-II
• Initialise population  of  configurations


• While not converged:


•   // gets many candidates, possibly more than 


•   // sort them in a multiobjective way


•   // keep top  candidates

Xn ⊂ 𝒳n n

X = mutate-and-combine(Xn) n

X = non-dominated-sort(X)

Xn = X[: n] n

Multi-Objective Population Based Training [Dushatskiy 2023]
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Preference-based methods
• Sometimes, we have many objectives and it is hard to know exactly how they 

should be prioritised

• Preference based methods ask users to provide feedback on which multiobjective 
solution is better

An AB test for many metrics on Facebook.  
Beyond Loss Efficient Optimization of Living 

Machine Learning. Bakshi Automl 2023 

1) Ask user their preference 
between multiple choices

2) Use a GP to guide the search 
toward region of the space with 

high utility

Preference-learning is also 
used in RLHF to fine tune 
LLMs so that we can talk 

with them!
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• 🤔 We need to sort to discard the bottom half of configurations, how can we sort if we have multiple objectives?

Image credit: Matthias Feurer.

Sample random configurations 
and starts evaluating them for 1/8 of 

the budget per configuration

At exponentially spaced 
checkpoint size, keep only top 50%, 

25%, 12.5% configurations
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stopped, sample a new one at 

random and start evaluating it for 
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💡Non-dominated sort allows to sort even 
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Extending Multifidelity to multi-objective

Multi-objective Asynchronous Successive Halving [Schmucker 2021]

Non-dominated sort, works 
much better than 

scalarization!

Bag of Baselines for Multi-objective Joint Neural Architecture Search and Hyperparameter Optimization [Guererro Viu 2021]

Non-dominated sort, works 
well in general…
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Population Based Training
• Tune by having a population of candidates

• When performing mutation, reuse previous weights!

• Allows to learn learning rate schedule!

Can learn dynamic learning rate schedules!

💡Non-dominated sort allows to sort even 
when we have multiple objectives

🤔 How can we extend the algorithm to 
handle multiple objectives?

https://deepmind.google/discover/blog/population-based-training-of-neural-networks/
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Multiobjective Population Based Training
• Multiobjective Population Based Training: uses non-dominated sort with PBT

• Extend PBT to multi objectives

Good at distributing exploration 
on the Pareto Front

Good at distributing exploration 
on the Pareto Front 

& Better than MOASHA
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Some theoretical foundations

• Computational complexity of multiobjective quantities


• Regret bounds on scalarization methods


• Difficulties of high-dimensional multiobjective optimization


• Link with multivariate analysis and Copula
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• If  then the hypervolume cannot be computed in polynomial time [Bringmann 2013]P ≠ NP

• Assuming exponential hypothesis, the hypervolume of  points with  objectives can only be 
computed in  [Bringmann 2013]

n d
nΩ(d)

• However, approximations of the hypervolume can be computed in polynomial time [Bringmann 
2010], implementations exists in Pygmo

• Digest of computational results: https://hpi.de/friedrich/research/the-hypervolume-indicator.html



Theoretical foundations of multiobjective optimization
Regret bounds

Random Hypervolume Scalarizations for Provable Multi-Objective Black Box Optimization [Golovin  2020]



Theoretical foundations of multiobjective optimization
Regret bounds

• Recall Golovin scalarization:  sλ(y) = min
i=1..k

(max(0, yi/λi))k)

Random Hypervolume Scalarizations for Provable Multi-Objective Black Box Optimization [Golovin  2020]



Theoretical foundations of multiobjective optimization
Regret bounds

• Recall Golovin scalarization:  sλ(y) = min
i=1..k

(max(0, yi/λi))k)

Random Hypervolume Scalarizations for Provable Multi-Objective Black Box Optimization [Golovin  2020]



Theoretical foundations of multiobjective optimization
Regret bounds

• Recall Golovin scalarization:  sλ(y) = min
i=1..k

(max(0, yi/λi))k)

This scalarization allows to approximate the hypervolume 
given many weights  sampled on a sphereλ

Random Hypervolume Scalarizations for Provable Multi-Objective Black Box Optimization [Golovin  2020]



Theoretical foundations of multiobjective optimization
Regret bounds

• Recall Golovin scalarization:  sλ(y) = min
i=1..k

(max(0, yi/λi))k)

This scalarization allows to approximate the hypervolume 
given many weights  sampled on a sphereλ

Random Hypervolume Scalarizations for Provable Multi-Objective Black Box Optimization [Golovin  2020]



Theoretical foundations of multiobjective optimization
Regret bounds

• Recall Golovin scalarization:  sλ(y) = min
i=1..k

(max(0, yi/λi))k)

This scalarization allows to approximate the hypervolume 
given many weights  sampled on a sphereλ

This allows to show that Bayesian Optimization average 
regret converges to zero

Random Hypervolume Scalarizations for Provable Multi-Objective Black Box Optimization [Golovin  2020]



Theoretical foundations of multiobjective optimization
Regret bounds

• Recall Golovin scalarization:  sλ(y) = min
i=1..k

(max(0, yi/λi))k)

This scalarization allows to approximate the hypervolume 
given many weights  sampled on a sphereλ

This allows to show that Bayesian Optimization average 
regret converges to zero

Random Hypervolume Scalarizations for Provable Multi-Objective Black Box Optimization [Golovin  2020]



Theoretical foundations of multiobjective optimization
Regret bounds

• Recall Golovin scalarization:  sλ(y) = min
i=1..k

(max(0, yi/λi))k)

This scalarization allows to approximate the hypervolume 
given many weights  sampled on a sphereλ

This allows to show that Bayesian Optimization average 
regret converges to zero

Random Hypervolume Scalarizations for Provable Multi-Objective Black Box Optimization [Golovin  2020]

Informal statement, the average Hypervolume regret 
obtained with Bayesian Optimization goes to zero
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Theoretical foundations of multiobjective optimization
Difficulties of high-dimensional multiobjective optimization
• What about optimizing many objectives?

• Hard to visualise problems with more than 3 objectives

• If , the complexity of the hypervolume indicator computation grows 
super-polynomially with the number of objectives ( )

P ≠ NP
nΩ(d)

• The ratio of non-dominated points increases rapidly with the number of 
objectives

For instance, the probability that a point is 
non-dominated in a uniformly distributed 
set of sample points grows exponentially 

fast towards 1 with the number of 
objectives.  [Emmerich 2018]
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Link with Copula theory

• Given a subset , the Pareto front  is defined by:G ⊂ ℝd 𝒫

• 𝒫 = {y ∈ G | ∀z ∈ G, y ⪯ z}

• Link with the multivariate cumulative distribution  FY(y) = ℙ[Y ⪯ y]

• y ∈ 𝒫 ⇒ FY(y) = 0

The Pareto front belongs to the 
zero level set of the CDF FY

Set of points in  that are not dominatedG

The level set of , 
 

converges to the Pareto front 

FY
∂LF

α = {y ∈ ℝd | FY(y) = α}
𝒫
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cumulative distribution function of a -dimensional random 

vector on the unit cube  with uniform marginals  

C : [0,1]d → [0,1] d C
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[0,1]d

Sklar theorem 
For any continuous multivariate distribution function , there 
exists a unique Copula function  such that:
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… which allows to estimate the level set and the Pareto front 
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• Hardware-aware NAS looks at finding architecture with good latency/accuracy trade-

offs…

• So that they can be deployed on device

• Perform search on each device

HAT: Hardware-Aware Transformers for Efficient Natural Language Processing [Wang 2020]

🚀 Killer application of (multiobjective) NAS 
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I want to 
choose a 

forecasting model 
that is both accurate 

and fast
🤯 There are 30+ models in 

Gluonts

Could you help me pick one?
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Multiobjective transfer learning
•  space of models and hyperparametersx ∈ 𝒳

•  has  objectives (error, latency, fairness, …)·f(x) ∈ ℝd d

• Evaluating all options in  is too expensive!𝒳

• Given offline evaluations, can we approximate the Pareto Front in a zero-shot fashion? 
Er

ro
r

Latency

Error and latency for time series forecasting models
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Applications: Instance Recommendation

• Instance recommendation for model deployment

• Recommend endpoint configuration (machine type, 
number of OMP thread, …) given a ML model

• Wants to optimise:

• Latency

• Throughput

• Cost per hour

• Ideally, wants to get recommendation eg zeroshot 
recommendations
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Applications
Machine type tuning

Cheapest optimal choice to 
deploy a DeepAR model

Cheapest optimal choice to 
deploy a Reset model

Fastest choice to deploy a small 
Resnet model

Gpu instances dominated!

m5: 4 CPUs machine

c5.4x: 16 CPUs machine

g4dn.16x: 64 CPUs machine with one GPU (T4)

p3.2x: 8 CPU machines with V100 GPU

🤔 If we have some metadata on the 
model being used (reset, XGboost, …).

Can we predict the Pareto front of 
hardware configurations? 
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• Sample many ML model and measure latency and cost on multiple machine

• Build a predictive model  that predicts the latency and cost of the 
model on a machine  given metadata  

Φθ(x, m) ∈ ℝ2

m x

• Metadata contains features such as the framework type (Pytorch, XGBoost, …)

I have an 
XGBoost model, what 
machine should I use 

to deploy it?

Predict latency and cost for 
each machine type given 

metadata  using x
Φθ(x, m) ∈ ℝ2

Predict the latency and cost for every machine 
type given  using m Φθ(x, m) ∈ ℝ2

latency ( ↓ )

cost ( ↓ )

Return the Pareto front to the user which have 
optimal tradeoffs

GPU machines will get low latency predictions 
given that we have an XGBoost model

I see, I guess I will 
pick this one
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Applications
Tuning hyperparameter of LLM judges hardware configurations
• Evaluating LLMs is expensive 💰

• It costs ~3500$ to evaluate one model on Chatbot Arena with human 
annotations…

• To get an leaderboard of ELO ratings

• 🤔 Can we get a cheaper approximation?

Work in progress

https://chat.lmsys.org/
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• System prompt: You’re an LLM that evaluates the strength of other LLMs, 

please evaluate the two options provided carefully and answer which of model A 
or B is better.

• Instruction: What is the minimum broadband upload speed to stream at 720p 
30fps to twitch while playing an online videogame? Twitch recommends 
3000kbps upload speed in my streaming software, but how much extra 
headroom do I need so the twitch stream and online gameplay are both smooth?

• Model A: Streaming on Twitch at 720p 30fps with a bitrate of 3000kbps (kilobits 
per second) is within the recommended settings

• Model B: To stream at 720p 30fps to Twitch while playing an online videogame, 
you'll need to consider the upload speed requirements…

• Best model (must be A or B):

LLM call

“A”

• Use fix baseline for model A (typically GPT4)

• Report win rate for all methods

LLM judge has many hyperparameters!

• LLM model (llama3-70B, llama3-8B, GPT4)

• Prompt being used

• Judge LLM inference parameters (temperature & topk)

• Number of LLM samples

• Float precision (FP8, BF16, …)

• Number of instructions evaluated

… and multiple objectives

• Spearman correlation with ELO ratings

• Dollar cost to evaluate a model
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Tuning hyperparameter of LLM judges

🤩  Ideal case for multi-objective optimization!
🤔 Main difficulties to overcome  
Evaluating one judge configurations is too 
expensive (10$ x #models ~ 400$)

Two techniques: subselect most 
informative instructions and use 
multifidelity
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Tuning hyperparameter of LLM judges hardware configurations

Baseline AlpacaEval 
hyperparameter, Spearman 
correlation with ELO ratings 

0.93 and cost 20$

Model found with 
grid-search

Configuration found with 
Spearman correlation 0.89 

and cost 0.8$
Configuration found with 

Spearman correlation 0.78 
and cost 0.03$
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GPareto (R library)

• BO methods (EHI, EMI, SMS, SUR)

BOTorch (Python)

• BO methods (EHI, qEHVI, qParEGO, 

qEHI, qNEHVI, …)

• Uses PyTorch to model the GP and 

optimize GP hyperparameters

SyneTune (Python)

• Constrained Bayesian Optimization, 

MOASHA, NSGA-II, MSMOS, MSMOS 
with random scalarization


• Can run locally, on the cloud or with 
simulation (with precomputed results)

Pygmo (Python/c++)

• General python library

• Contains optimizers but also utilities to compute 

Hypervolume, Hypervolume contribution, …

• Contains approximation algorithms

Some multiobjective libraries
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Code 
How to tune multiple objectives in Syne Tune

https://github.com/syne-tune/syne-tune/blob/main/examples/launch_height_moasha.py

Step 1: report multiple objectives in a training script Step 2: call a multiobjective optimizer to tune the training script

https://github.com/syne-tune/syne-tune/blob/main/examples/launch_height_moasha.py
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• Multiobjective optimization allows to optimise multiple objectives at the same time

• Generally not a single solution but a set of optimal solutions, the Pareto front

• Key methods:

• Scalarization

• Bayesian Optimization

• Evolution Algorithms

• Many applications!

• Active area of research


