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Goals

• Understand benefit of transfer learning to speed-up HPO


• Understand the key challenges to apply transfer learning to HPO


• Get an idea of the main techniques being used in state-of-the-art methods


• Know how to apply transfer learning to your problem
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Introduction

• Hyperoptimization often gives large improvements

• But it is not systematically used

• Why?

• Lack of tool knowledge

• Attachement to grid-search interpretability & ease

• Can be expensive

• Transfer learning is a subfield that speeds up HPO by looking at previous evaluations 
and tuning runs

Bayesian Optimization in AlphaGo 
[Chen 2018]

Bayesian Optimization was 
key to improve AlphaGo!
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Speeding-up HPO

• Bayesian Optimization: 

• allows to exploit previous evaluations by building a surrogate model 

• Multifidelity: 

• Evaluating configurations until the end is wasteful, we can often early stop 

• Asynchronous distributed optimization:

• Use multiple asynchronous workers

• Don’t wait for intermediate results: schedule new tasks as soon as workers are available 

• Transfer-learning: 

• exploit information from previous HPO runs 
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Hyperparameter optimization
Recap

• Hyperparameter simple setting, find the 
best hyperparameter of f(x) ∈ ℝ

• x* = argminx∈𝒳 f(x)

•  can be the accuracy obtained after 
training a neural network with 
hyperparameter 

f(x)

x

• What if we had extra evaluations? 

Wistuba and Grabocka. Meta-Learning for 
Hyperparameter Optimization 2023

An example of a search space 𝒳

For instance, x* = [ViT,0.2,Adam,10−4]



Leveraging extra evaluations
Why we expect it to work

Wistuba and Grabocka. Meta-Learning for 
Hyperparameter Optimization 2023

Can we exploit 
the similarity 

between 
datasets?
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Hyperparameter optimization
With off-line evaluations…

Assume one has run many previous 
hyperparameter optimizations

Error obtained when training a 
forecasting model on a given dataset

🤔 How to exploit past-
observations to speed-up 
the search of a new task?
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Leveraging extra evaluations
Notations

• Want to optimize x* = argminx∈𝒳 f(x)

• Offline evaluations  available 

for  tasks where 

𝒟M =
M

⋃
i=1

{xj
i , yj

i }
Nj
i=1

M yj
i = f j(xj

i )

• For instance  are results of the same ML model 
as  obtained when training on a different dataset 

f j

f j

• Can we use  to find good hyperparameter on 
our new task  much faster?

𝒟M

f

𝒟M =
M

⋃
i=1

{xj
i , yj

i }
Nj
i=1

🤔 Can you think about potential strategies?

error
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Transfer learning methods
• Warm-starting: initialise Bayesian Optimization with best previous 

configuration [Feurer 2015]

• Prune search space: restrict search to bounding-box of best solution 
found previously [Peronne 2019]

• Leverage feature describing task to find most similar tasks [Wistuba 
2015, Jomaa 2021]

• Surrogates: ABLR [Peronne 2018] / Deep kernel [Wistuba 2021]

• Learning curve learning [Wistuba 2020]

• Prior-based: 

• Learn prior from offline evaluations [Salinas 2019]

• Leverage user priors: Priorband [Mallik 2023]

• Portfolio learning [Wistuba 2015]

• Foundational model: Optformer We will focus on those methods

Prune search space to an ellipse containing the best 
hyperparameters of previous tasks [Peronne 2019]

Learning curve model learned on offline evaluations 
allows to predict final values with high correlations 

[Wistuba 2020]

Best configuration on task i

Search space restricted to an ellipsoid 
containing previous best configurations
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i=1 M

• Scale of objective  often vary significantly across tasksyj
i

• Noise may be (very) far from Gaussian, annoying to apply Bayesian Optimization

• Need to handle many observations: hard to apply (approximate) Gaussian 
Process (the cost of applying GP on  evaluations is )n 𝒪(n3)

• Avoid negative transfer (aka catastrophic remembering)

We will discuss how to 
adressing scale issues…

… then how to address 
computational issues
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Gaussian Copula Transform
Nice properties

Two very nice properties of :


• 😀  (great for GP)


• 😀 Built-in invariance of  to monotonic transformation on 

Ψ = Φ−1 ∘ F

zj = Ψ(yj) ∼ 𝒩(0,1)

zj yj

🤔 What is the 
distribution of 

?F(y) 💡 Uniform !𝒰([0,1])

🤔 What is the 
distribution of 

?Φ−1 ∘ F(y)
💡 Normal !𝒩(0,1)
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Learning joint representations across tasks
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• Benefits:

• Amplitude, noise issues: addressed by using ψ 

• Scale with many offline evaluations: inference done with a single pass over an MLP 

• Negative transfer: alleviated with a Gaussian Copula Process 
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High-level idea: A Gaussian Copula Process whose prior is 𝒩(μθ(x), σ2

θ (x))

Standard 
Gaussian Process

Gaussian Copula 
Process

Gaussian Copula 
Process whose prior is 

𝒩(μθ(x), σ2
θ (x))

Prior set to mean 0 
variance 1 normal 

distribution

Data assumed to be 
normally distributed

Prior set to mean 0 
variance 1 normal 

distribution

Data transformed to be 
normally distributed

Prior set to  
learned from offline evaluations

𝒩(μθ(x), σ2
θ (x))

Data transformed to be 
normally distributed
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Evaluations

GP > RS as the method can exploit

GCP > GP as we made less restriction on the noise

Transfer learning generally improve performance

Parametric prior  improves over baseline significantly

Only if we use the right transformation…

Using this transformation also improves baselines a lot



Robustness to negative transfer



Robustness to negative transfer

• If a new task differ from previous evaluations, we would 
still want to get reasonable performance!



Robustness to negative transfer

• If a new task differ from previous evaluations, we would 
still want to get reasonable performance!

• Improvement over random search ( ), tasks sorted by 
transfer learning difficulty (RMSE of prior predictor on the 
new task)

↑



Robustness to negative transfer

• If a new task differ from previous evaluations, we would 
still want to get reasonable performance!

• Improvement over random search ( ), tasks sorted by 
transfer learning difficulty (RMSE of prior predictor on the 
new task)

↑



Robustness to negative transfer

• If a new task differ from previous evaluations, we would 
still want to get reasonable performance!

• Improvement over random search ( ), tasks sorted by 
transfer learning difficulty (RMSE of prior predictor on the 
new task)

↑

Low rmse, prior 
is quite good



Robustness to negative transfer

• If a new task differ from previous evaluations, we would 
still want to get reasonable performance!

• Improvement over random search ( ), tasks sorted by 
transfer learning difficulty (RMSE of prior predictor on the 
new task)

↑

Low rmse, prior 
is quite good

High rmse, prior 
is quite bad



Robustness to negative transfer

• If a new task differ from previous evaluations, we would 
still want to get reasonable performance!

• Improvement over random search ( ), tasks sorted by 
transfer learning difficulty (RMSE of prior predictor on the 
new task)

↑

GCP is robust to negative transfer 
even in challenging scenarios …

Low rmse, prior 
is quite good

High rmse, prior 
is quite bad



Robustness to negative transfer

• If a new task differ from previous evaluations, we would 
still want to get reasonable performance!

• Improvement over random search ( ), tasks sorted by 
transfer learning difficulty (RMSE of prior predictor on the 
new task)

↑

GCP is robust to negative transfer 
even in challenging scenarios …

… as opposed to CTS that just 
exploits prior from transfer learning

Low rmse, prior 
is quite good

High rmse, prior 
is quite bad
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GC3P pros and cons

• GCP is robust to negative transfer even in challenging scenarios

• Robust to outliers and scale changes between tasks

• Can handle many offline evaluations without cubic bottleneck

• … But requires offline evaluations

🤔 Could we avoid the need of offline evaluations, 
perhaps the user knows some good prior distribution? 
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Theoretical analysis
• Few work on analysing performance of transfer learning

• Shoutout to [Ram 2023] for being one of the first!

• Study bound on few shot hyperparameter optimization for 
pruning and surrogate based approaches

• Formalize assumption that “tasks are similar”

• In the case of surrogate based approaches (such as GCP)

Wasserstein distance between the new task and task t

Task weights which can be based on dataset features

Gap with optimal performance

Assume that surrogate error is small

Error due to surrogate
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Leverage user priors
• Practitioners often know good range of hyperparameters


• What if we ask them their prior instead of learning it?


• Needs robustness to potential user prior misspecification 

PriorBand: Practical Hyperparameter Optimization in the Age of Deep Learning [Mallik 2023]

Learn which strategy is better 
between user strategy and 

random search

🥳 Learning which strategy is 
better allows failure in cases 

when user priors are bad
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Optformer
Imitating other HPO methods

The method can imitate 
different HPO strategy! 

🤔 This is an impressive result! some methods are 
complex, for instance GP requires  
operations to select the next candidate given  
previous observations

𝒪(n3)
n
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Optformer
Outperforming other HPO methods
• The method learn a predictive model able to simulate multiple HPO methods

• The method can also select what is the best hyperparameter to evaluate…

• … by sampling many hyperparameter and use the model prediction to select 
the best one (EI)

Outperforms method considered 
in both Google data and public 

dataset considered ✴

✴ private model and 
evaluation code
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• Tabular prediction: problem definition

• Current state of tabular prediction evaluation

• A quick glance at the current SOTA tabular system: AutoGluon

• Improving AutoGluon with offline evaluations and portfolio learning
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Tabular prediction

• Input: a training data frame, a target column and a training time 
budget

• Output: a predictor able to give predictions given a test dataframe

• Metrics: 


• RMSE (regression), log-prob (classification)


• Prediction latency, memory, …

• Potential candidate: any tabular method and system that returns 
predictions given the time constrain


• Can consider multiple model family, ensemble, …

Tabular prediction API example
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AutoGluon at a glance

• AutoGluon recipe:

• Runs 13 models (KNN, linear, Catboost, LightGBM, MLPs, 
RandomForest, …) in a first layer 

• For each model, Autogluon performs bagging with out of fold 
cross-validation

• Each model is learned on 8 non-overlapping fold of the data 
and the predictions are averaged

• Then perform stacking: e.g. learn the models again while 
concatenating the predictions of the first layer with the original 
features

• Then perform ensembling: by estimating the weights on hold-
out data

• Lets have a look at Autogluon now!

Out of fold evaluation, image credit: data camp
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💡 Storing predictions and target labels allows to 
obtain the performance of any ensemble on the fly!

Doing this analysis just costs a few minutes on a 
laptop (as opposed to days on a cluster!)

Tuning hyperparameters helps a lot but it 
is not done in AutoGluon because of cost.  

Can transfer learning help?
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My favourite transfer learning algorithm ❤ ❤ ❤
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• Quick demo
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Try it out for your self!

https://github.com/autogluon/autogluon

• State of the art for tabular prediction and time series forecasting
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Syne Tune

• ZeroShot/Portfolio 

• CTS

• RUSH

• Bounding-box

• BO+WarmStart

NEPS

• Prior band
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Conclusion

• Transfer learning in HPO works by reusing previous evaluations

• Many methods

• Adapt BO: prune search space, warm-start, learn priors…

• Learning curve prediction

• Foundational approach

• Transfer learning can speed HPO significantly!


