

Tabular Foundational Models: An Overview

David Salinas. TU Berlin. December 2025.

Why Tabular Data Matters

Why Tabular Data Matters

- Tabular data is the most prevalent format in real-world ML applications

Why Tabular Data Matters

- Tabular data is the most prevalent format in real-world ML applications
 - Healthcare records, financial transactions, customer databases, ...

Why Tabular Data Matters

- Tabular data is the most prevalent format in real-world ML applications
 - Healthcare records, financial transactions, customer databases, ...
 - Many applications: fraud detection, predicting demand, credit scoring, ...

Why Tabular Data Matters

- Tabular data is the most prevalent format in real-world ML applications
 - Healthcare records, financial transactions, customer databases, ...
 - Many applications: fraud detection, predicting demand, credit scoring, ...
 - Large portion of ML model deployed in industry

Why Tabular Data Matters

- Tabular data is the most prevalent format in real-world ML applications
 - Healthcare records, financial transactions, customer databases, ...
 - Many applications: fraud detection, predicting demand, credit scoring, ...
 - Large portion of ML model deployed in industry
- State of the art dominated by gradient boosted decision trees for many years

Why Tabular Data Matters

- Tabular data is the most prevalent format in real-world ML applications
 - Healthcare records, financial transactions, customer databases, ...
 - Many applications: fraud detection, predicting demand, credit scoring, ...
 - Large portion of ML model deployed in industry
- State of the art dominated by gradient boosted decision trees for many years
 - XGBoost, LightGBM, CatBoost became the default choice

Why Tabular Data Matters

- Tabular data is the most prevalent format in real-world ML applications
 - Healthcare records, financial transactions, customer databases, ...
 - Many applications: fraud detection, predicting demand, credit scoring, ...
 - Large portion of ML model deployed in industry
- State of the art dominated by gradient boosted decision trees for many years
 - XGBoost, LightGBM, CatBoost became the default choice
 - Consistently outperformed neural approaches across benchmarks

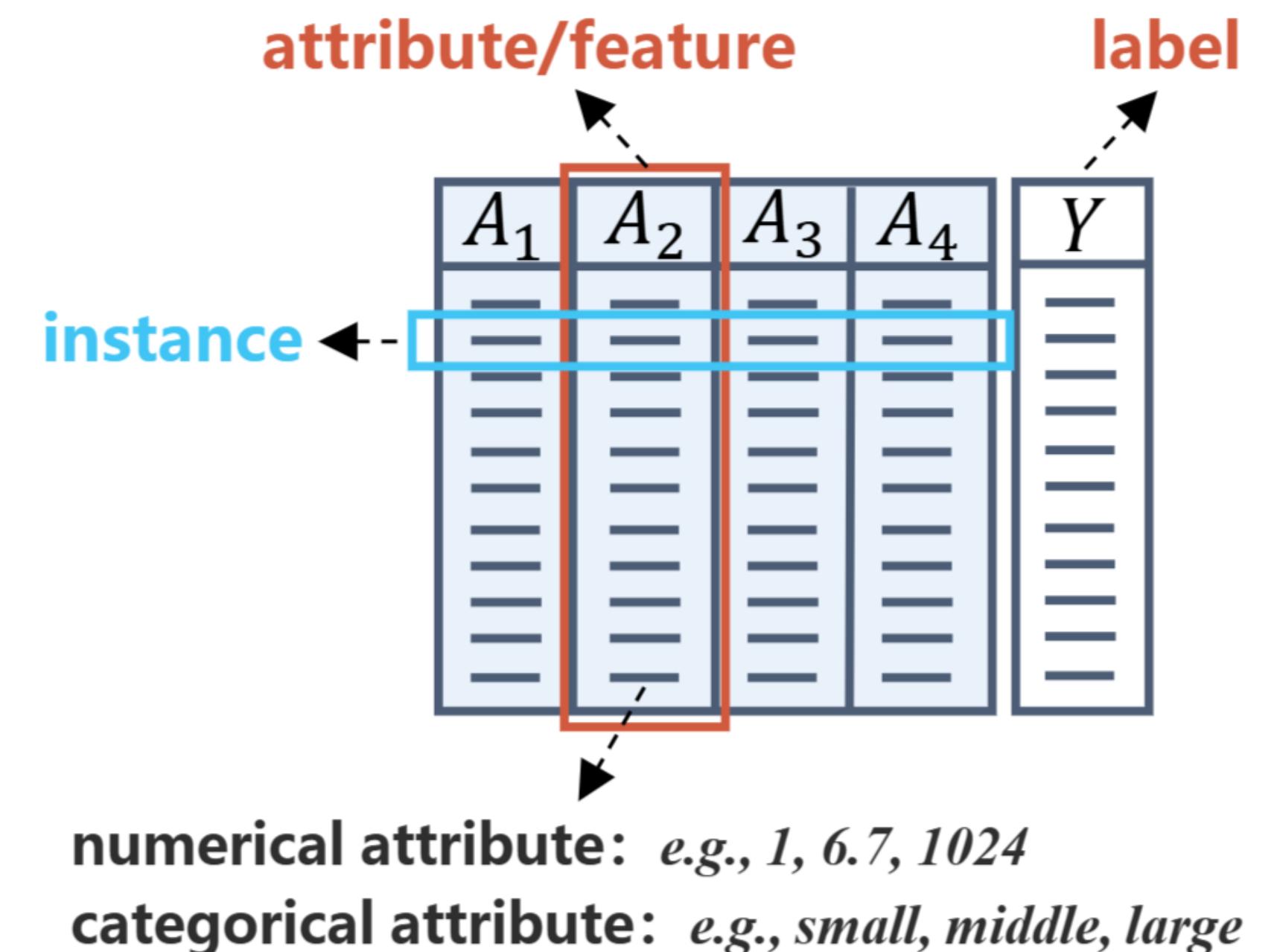
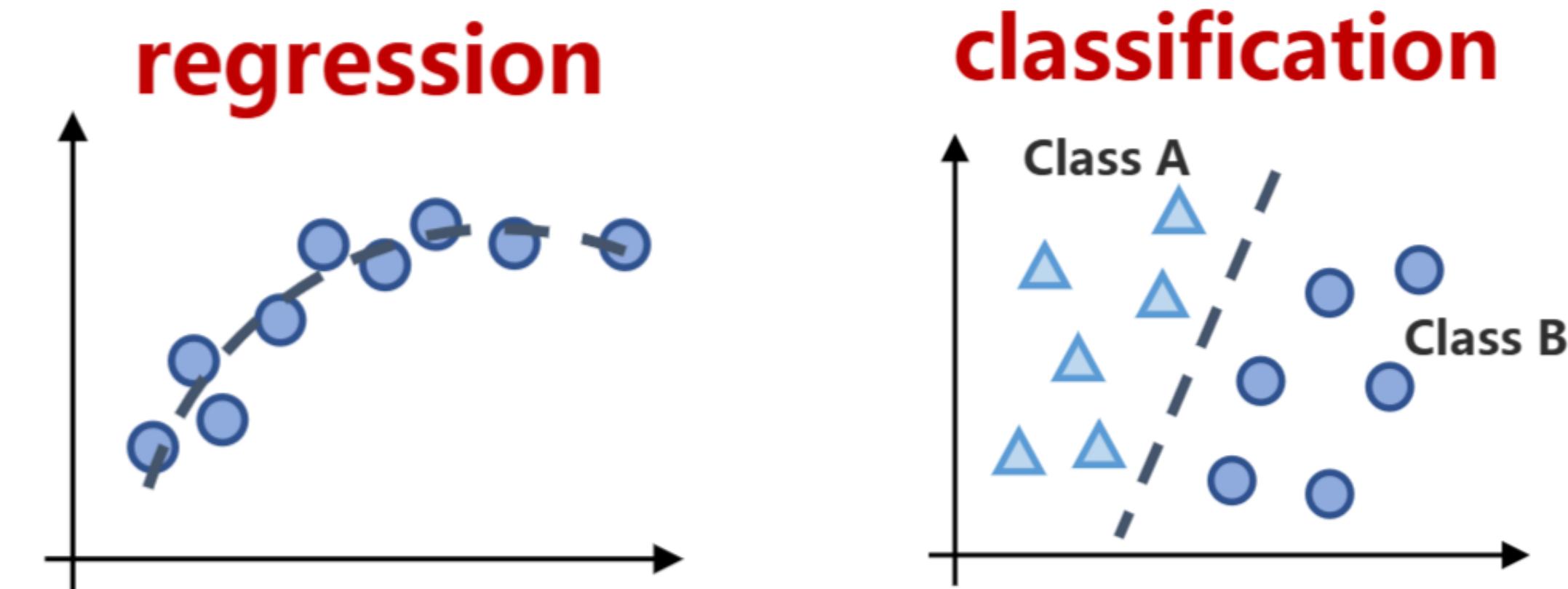
Tabular prediction

- Input: a training data frame, a target column and a training time budget
- Output: a predictor able to give predictions given a test dataframe
- Metrics:
 - RMSE (regression), log-prob (classification)
 - Prediction latency, memory, ...

```
import pandas as pd
from autogluon.tabular import TabularPredictor

df_train = pd.read_csv('train.csv')
df_test = pd.read_csv('train.csv')

predictor = TabularPredictor(label='class').fit(df_train)
predictions = predictor.predict(df_test)
```



This talk

Menu du jour

- Entrée: introduction to Tabular PFNs
- Menu: EquiTabPFN, dealing with the lack of equivariance of PFNs
- Dessert: benchmarking tabular models

Tabular PFNs

Deep-Learning + Tabular = ❤?

- Many attempts to bring deep learning to tabular domains
 - Typically transformer-based methods trained on single datasets
 - TabTransformer, FT-Transformer, SAINT and others
- These approaches generally failed to outperform boosted trees
 - At best, *matched* performance of tree-based methods
 - Required more computation and careful tuning
- No clear advantage to justify the added complexity
 - Tabular Data: Deep Learning is Not All You Need [Shwartz-Ziv 2021]
 - Why do tree-based models still outperform deep learning on tabular data? [Grinsztajn 2022]

TabPFN – A Paradigm Shift

- TabPFN marked a significant departure from previous approaches
 - First foundational model for tabular data that works
- Key innovation:
 - 1. Train on **synthetic data**
 - Solve data scarcity => can fit model on 100s millions of synthetic datasets
 - 2. Fit and predict in a **single forward pass** with In Context Learning (ICL)
 - No iterative training loop at inference time
 - Provide training data and test points as input → model outputs predictions directly
- Substantially outperforms boosted trees on small/medium datasets, even full blown **AutoML systems**
- Challenge becomes designing the *prior*, not the *algorithm* (the name Priorlabs indicates this)

PFN – How Does It Work?

- Training happens on synthetic datasets, not real data:
 - Sample tabular datasets $(X_{train}, y_{train}, X_{test}, y_{test}) \sim p(\mathcal{D})$
- A transformer trained to predict the posterior predictive distribution directly:
 - Estimate $p(y_{test} | X_{test}, X_{train}, y_{train})$ with encoder-decoder architecture
 - The distribution $p(\mathcal{D})$ is carefully engineered to resemble real-world tabular data
 - Model learns Bayesian inference by observing millions of synthetic learning problems

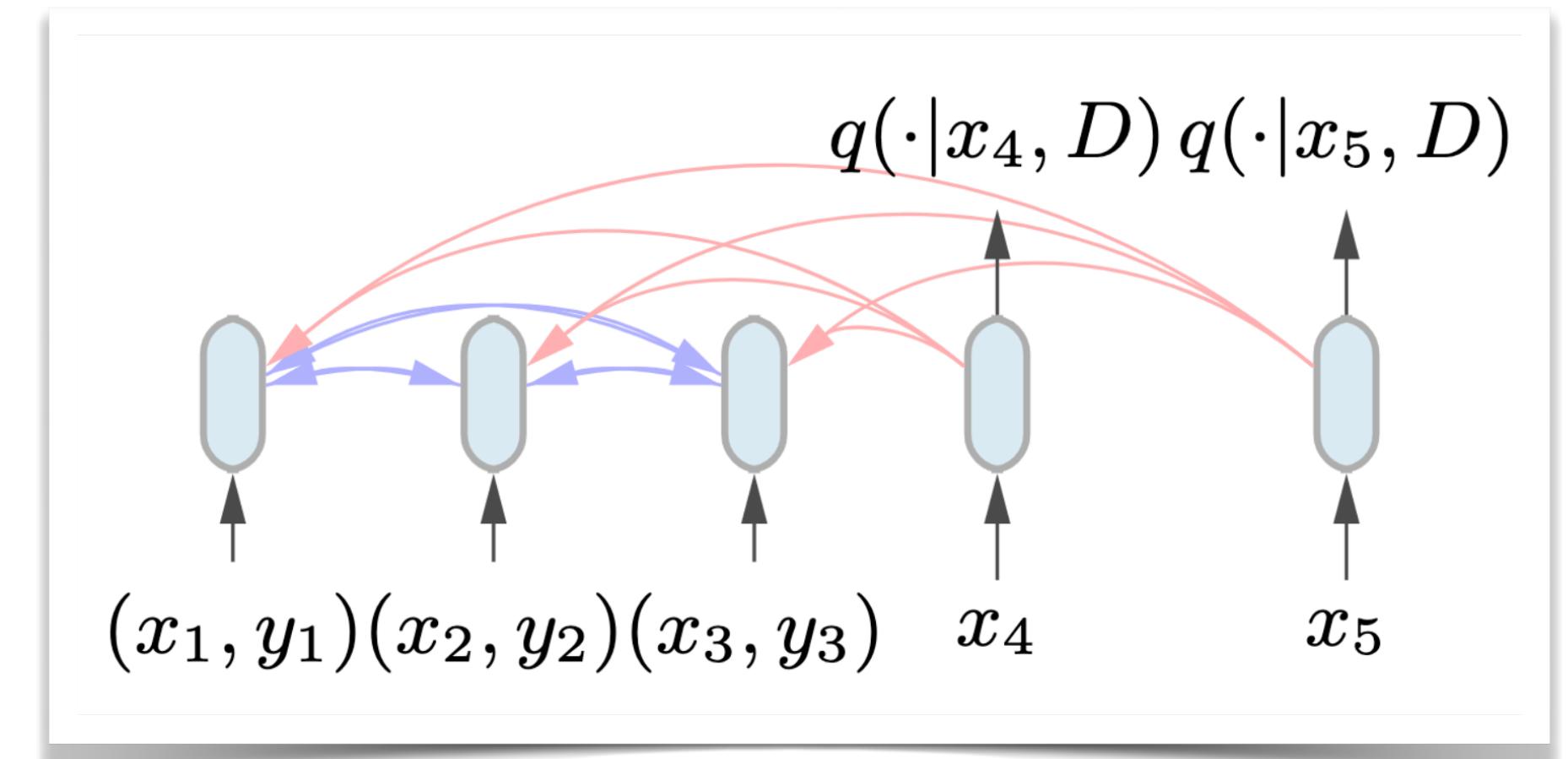
Architecture

Architecture

- Encode X_{train}, y_{train} with self-attention, decode X_{test} by attending on the contextualized tokens of X_{train}, y_{train}

Architecture

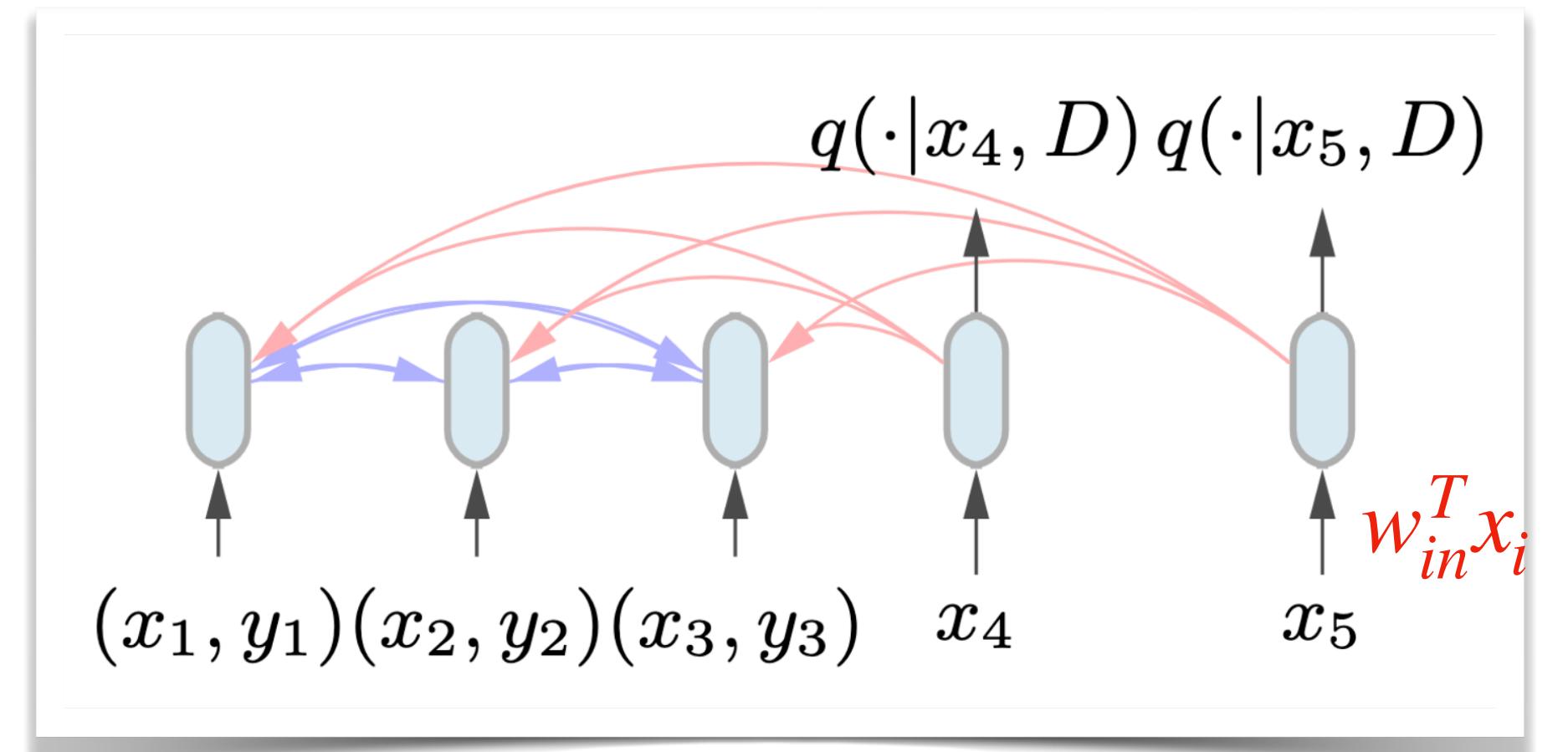
- Encode X_{train}, y_{train} with self-attention, decode X_{test} by attending on the contextualized tokens of X_{train}, y_{train}



TabPFN-v1 architecture

Architecture

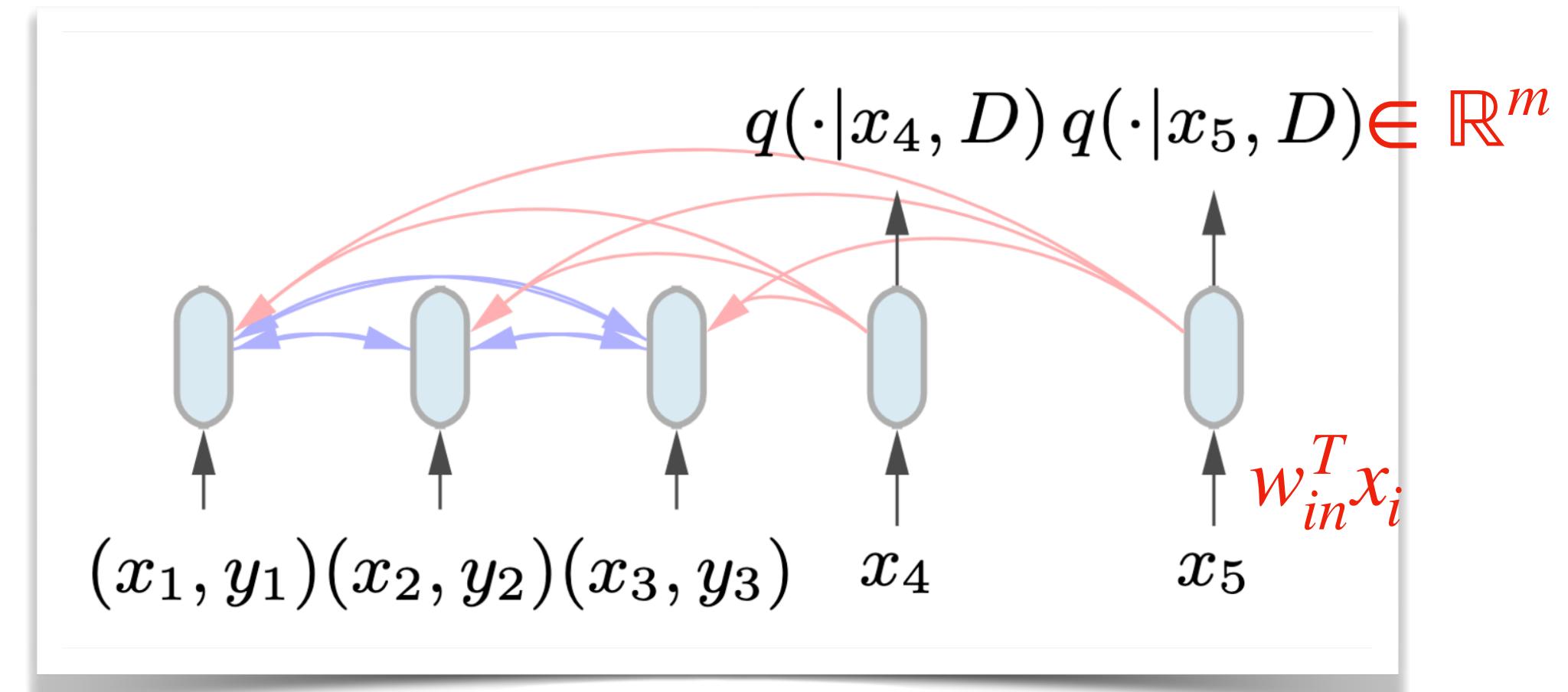
- Encode X_{train}, y_{train} with self-attention, decode X_{test} by attending on the contextualized tokens of X_{train}, y_{train}



TabPFN-v1 architecture

Architecture

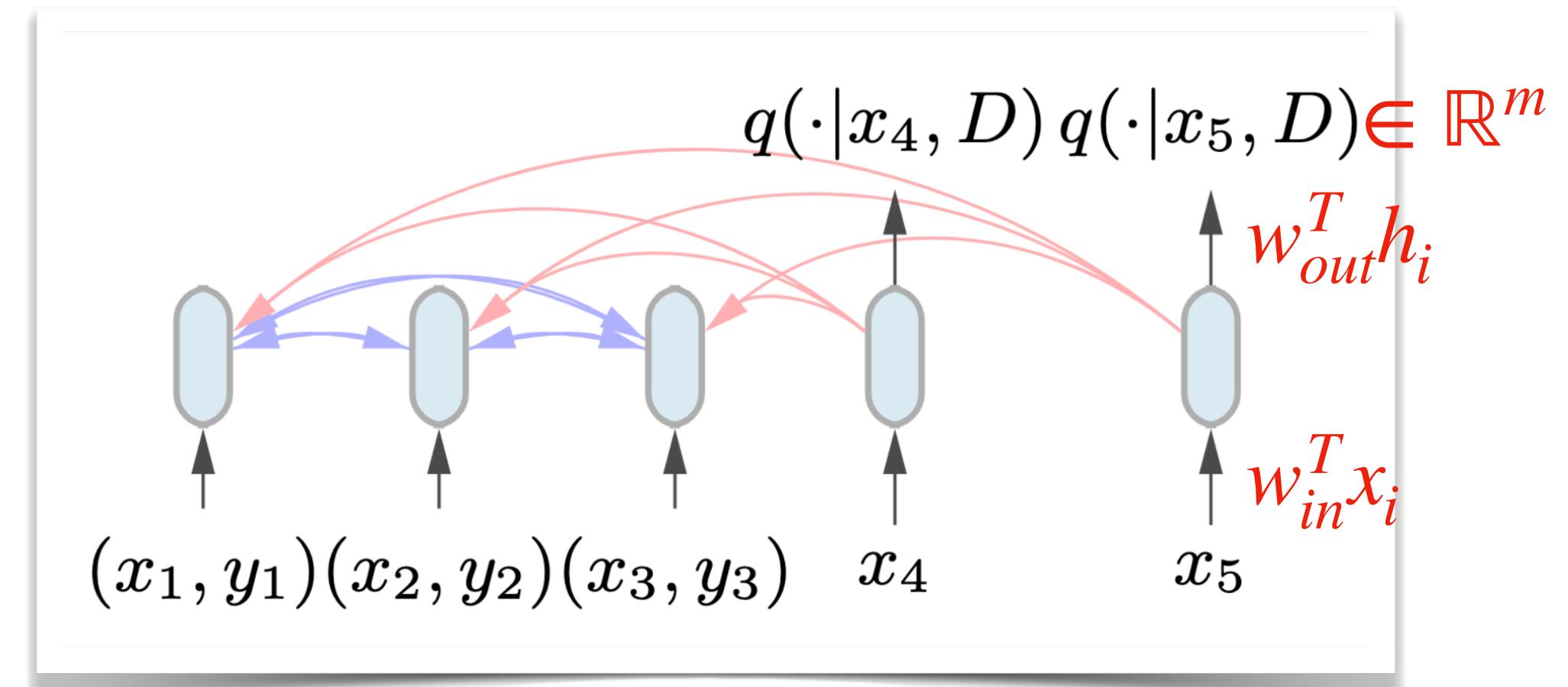
- Encode X_{train}, y_{train} with self-attention, decode X_{test} by attending on the contextualized tokens of X_{train}, y_{train}



TabPFN-v1 architecture

Architecture

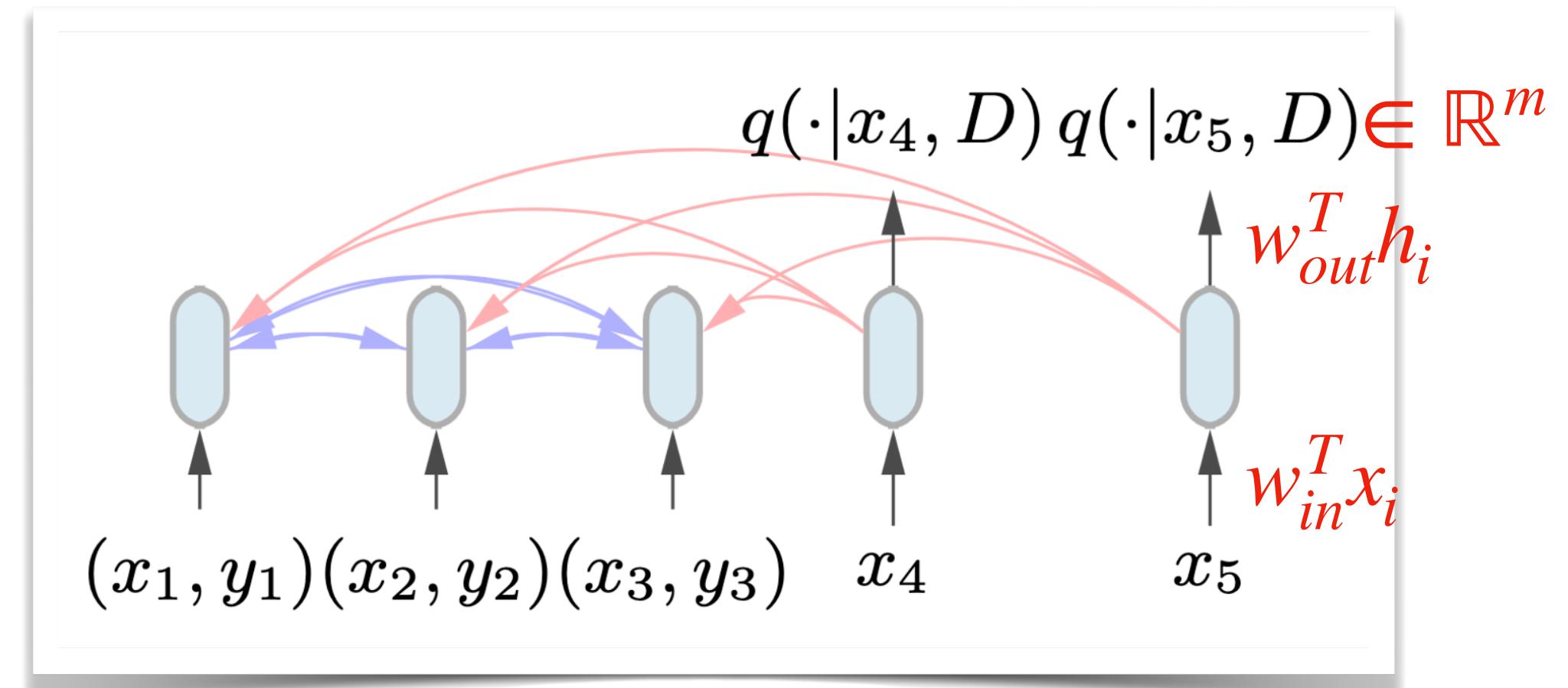
- Encode X_{train}, y_{train} with self-attention, decode X_{test} by attending on the contextualized tokens of X_{train}, y_{train}



TabPFN-v1 architecture

Architecture

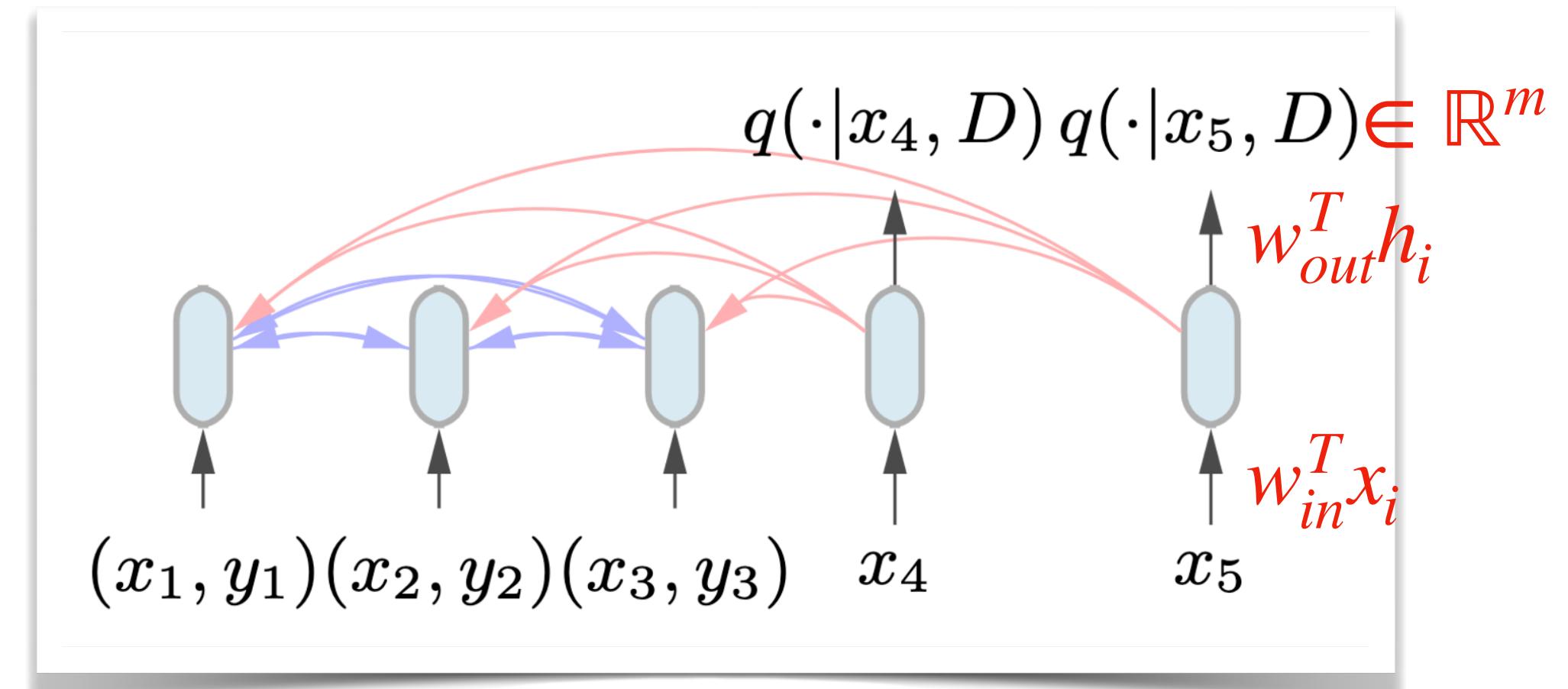
- Encode X_{train}, y_{train} with self-attention, decode X_{test} by attending on the contextualized tokens of X_{train}, y_{train}
- Model is trained only up to a number of features and target dimension (with zero-padding)



TabPFN-v1 architecture

Architecture

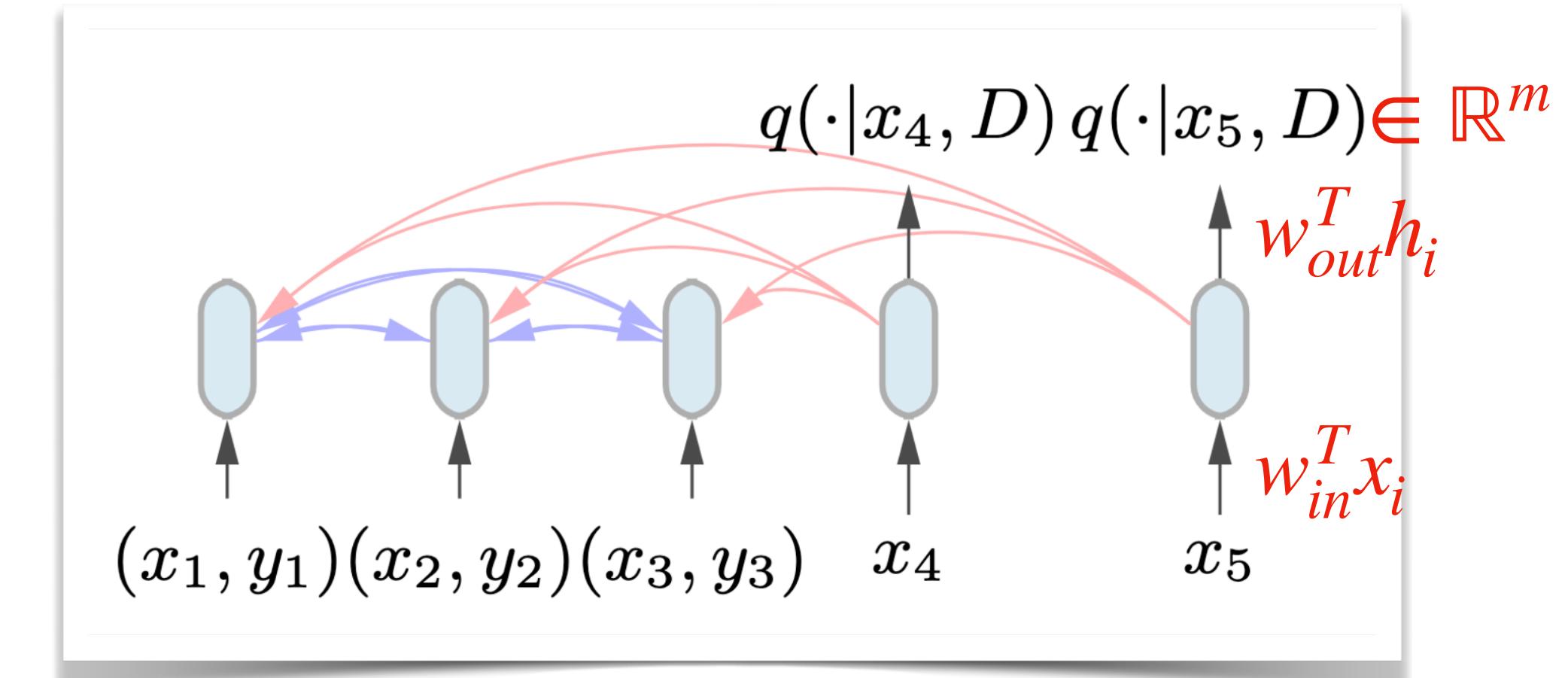
- Encode X_{train}, y_{train} with self-attention, decode X_{test} by attending on the contextualized tokens of X_{train}, y_{train}
- Model is trained only up to a number of features and target dimension (with zero-padding)
- Cannot perform inference on number of features/classes not seen!



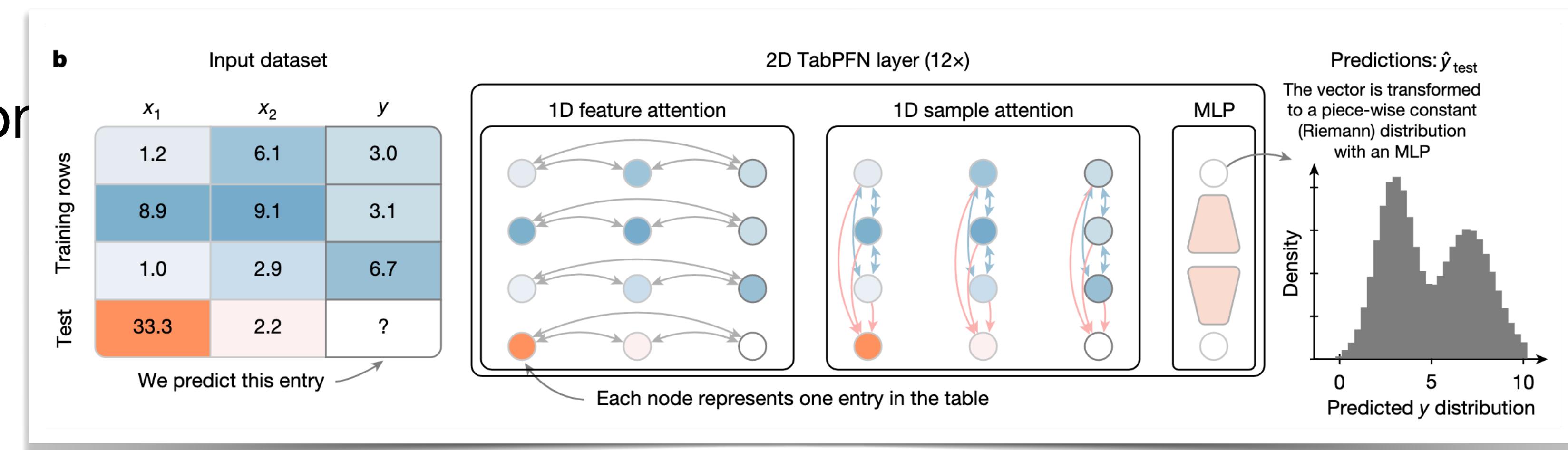
TabPFN-v1 architecture

Architecture

- Encode X_{train}, y_{train} with self-attention, decode X_{test} by attending on the contextualized tokens of X_{train}, y_{train}
- Model is trained only up to a number of features and target dimension (with zero-padding)
- Cannot perform inference on features/classes not seen!



TabPFN-v1 architecture



TabPFN-v2 architecture

The Prior - Structural Causal Models

- The prior $p(\mathcal{D})$ is the **heart** of what makes PFNs work
- TabPFN uses Structural Causal Models (SCMs) to generate synthetic data:
 - SCM defines a directed acyclic graph
 - Each variable is a function of its parents
 - Nodes outputs are random MLPs
- Creates diverse synthetic datasets with realistic feature interactions

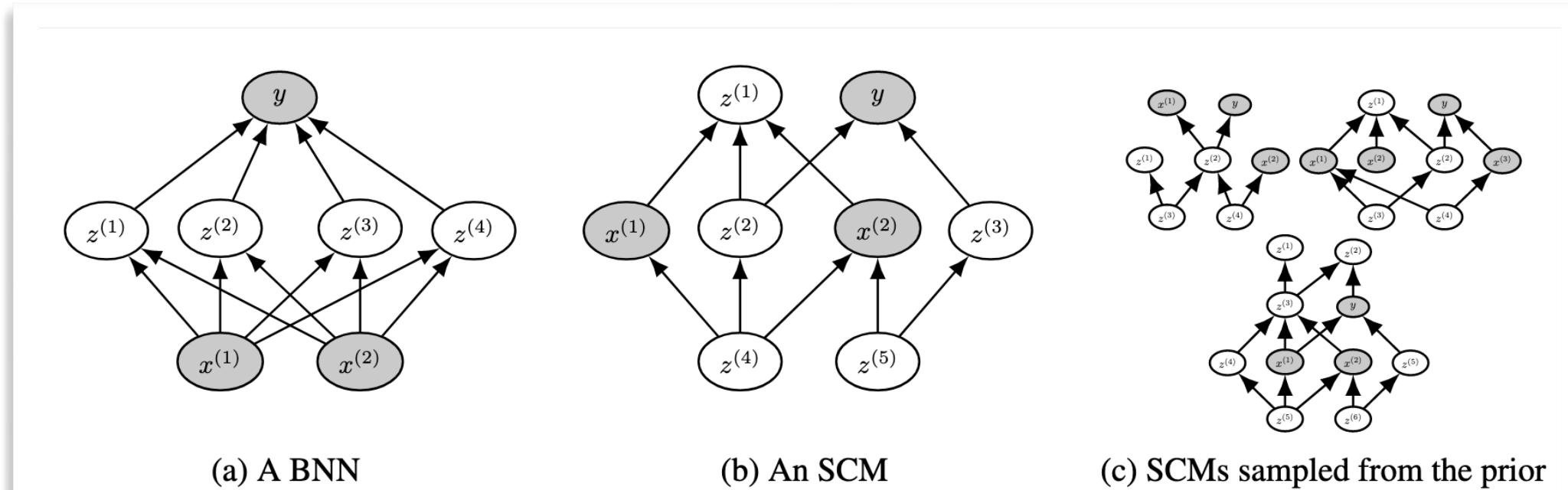


Figure 2: Overview of graphs generating data in our prior. Inputs x are mapped to the output y through unobserved nodes z . Plots based on Müller et al. (2022).

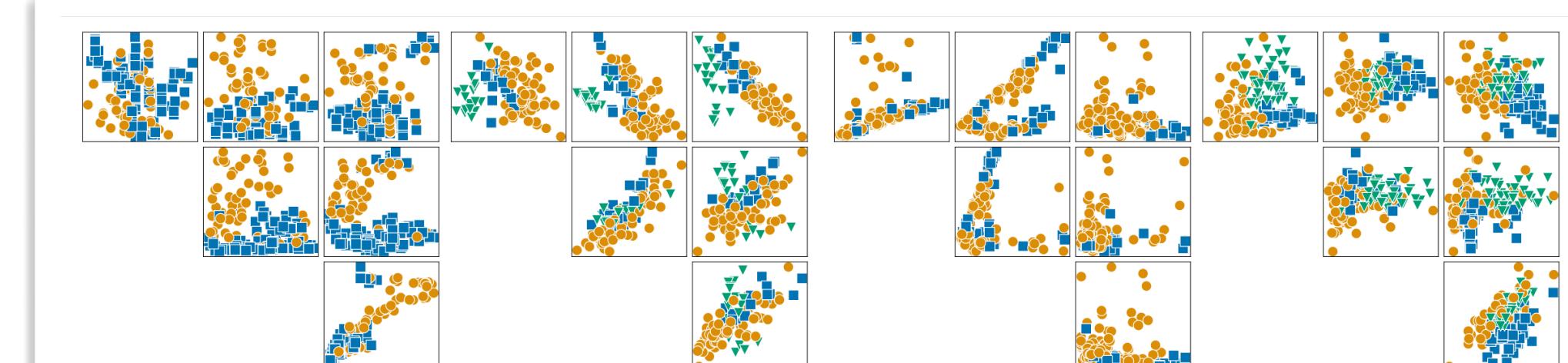
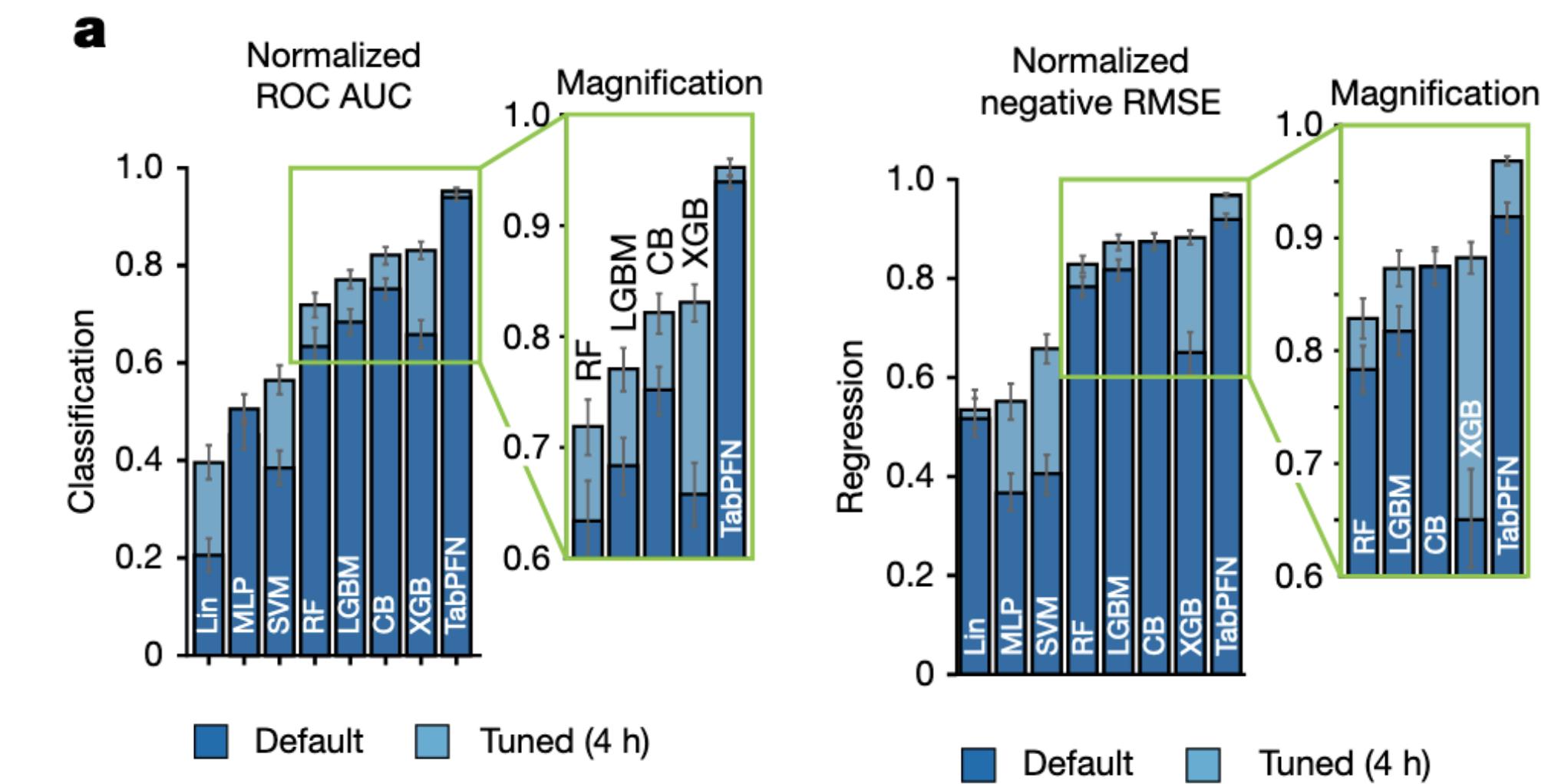


Figure 3: Each point represents a sample, each sub-plot shows the value of two features for each sample, color indicates the class label. (a) Two synthetic datasets generated by our causal tabular data prior. Numeric SCM outputs are mapped to classes as described in Section 4.5. (b) Two datasets from our validation datasets: Parkinsons (Left) and Wine (Right).

Results

- TabPFN-v1: decent results on a small number of datasets against toyish baselines
- TabPFN-v2: outperforms other methods on small datasets (up to 10,000 samples)
- TabPFN-v2.5: outperforms **SOTA AutoML system** (at time of publication) on medium sized datasets



TabPFN-v2

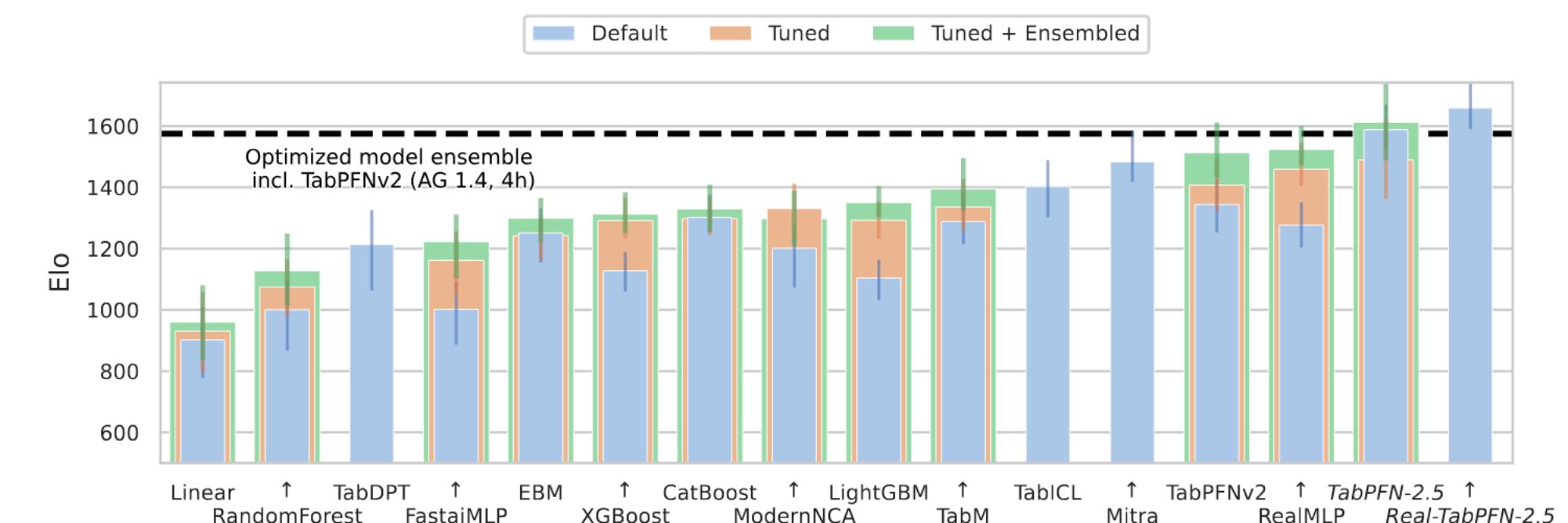


Figure 1: TabPFN-2.5 performance on the standard TabArena-lite benchmark [1], TabPFNv2 classification subset. TabPFN-2.5 outperforms any other model in a forward pass, and marks a strong leap from TabPFNv2. When fine-tuned on real data, Real-TabPFN-2.5 shows even stronger performance. The horizontal dotted line stands for AutoGluon 1.4 extreme mode tuned for 4 hours, an ensemble of models including TabPFNv2.

TabPFN-v2.5

You said PFN?

You said PFN?

- Many followup works!

You said PFN?

- Many followup works!
- Mothernet, Gamformer, TabForest, TabDPT, TabICL, ContextTab, Mitra, EquiTabPFN, ...

You said PFN?

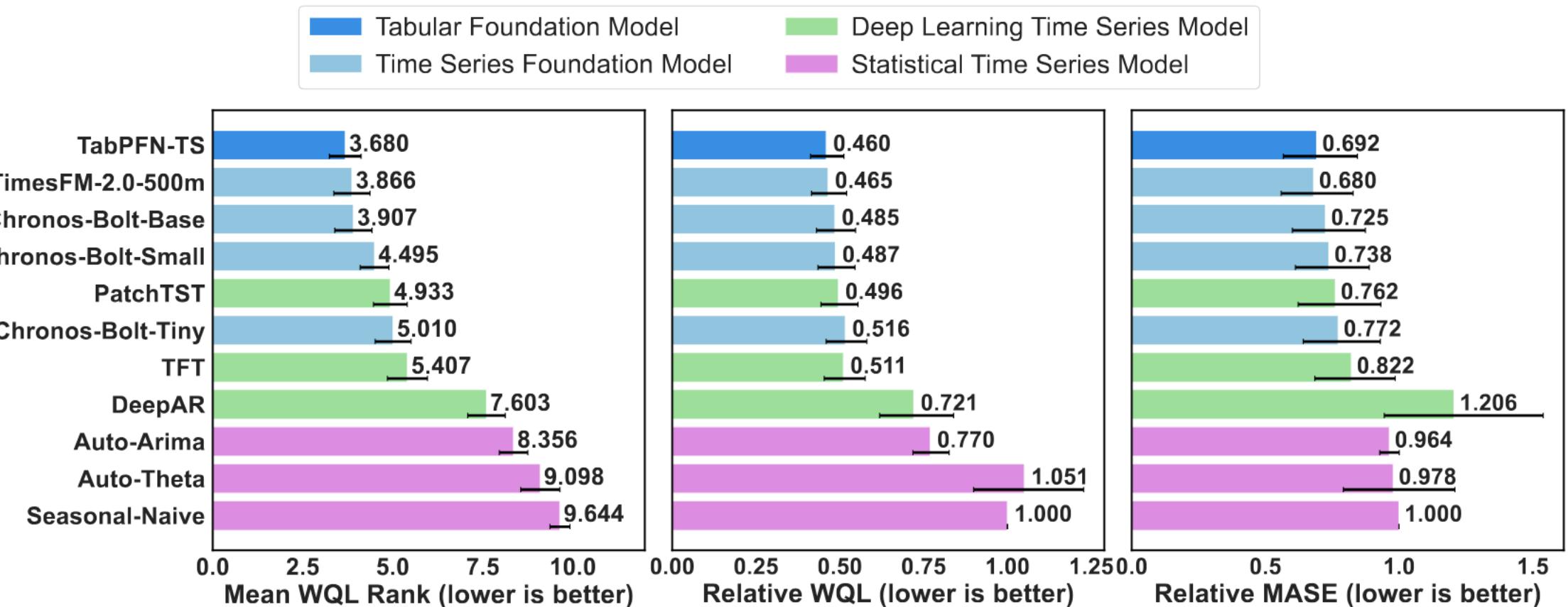
- Many followup works!
- Mothernet, Gamformer, TabForest, TabDPT, TabICL, ContextTab, Mitra, EquiTabPFN, ...
- Some applications:

You said PFN?

- Many followup works!
- Mothernet, Gamformer, TabForest, TabDPT, TabICL, ContextTab, Mitra, EquiTabPFN, ...
- Some applications:
 - Time-series (TabPFN-TS Shi-Bin-Hoo 2025)

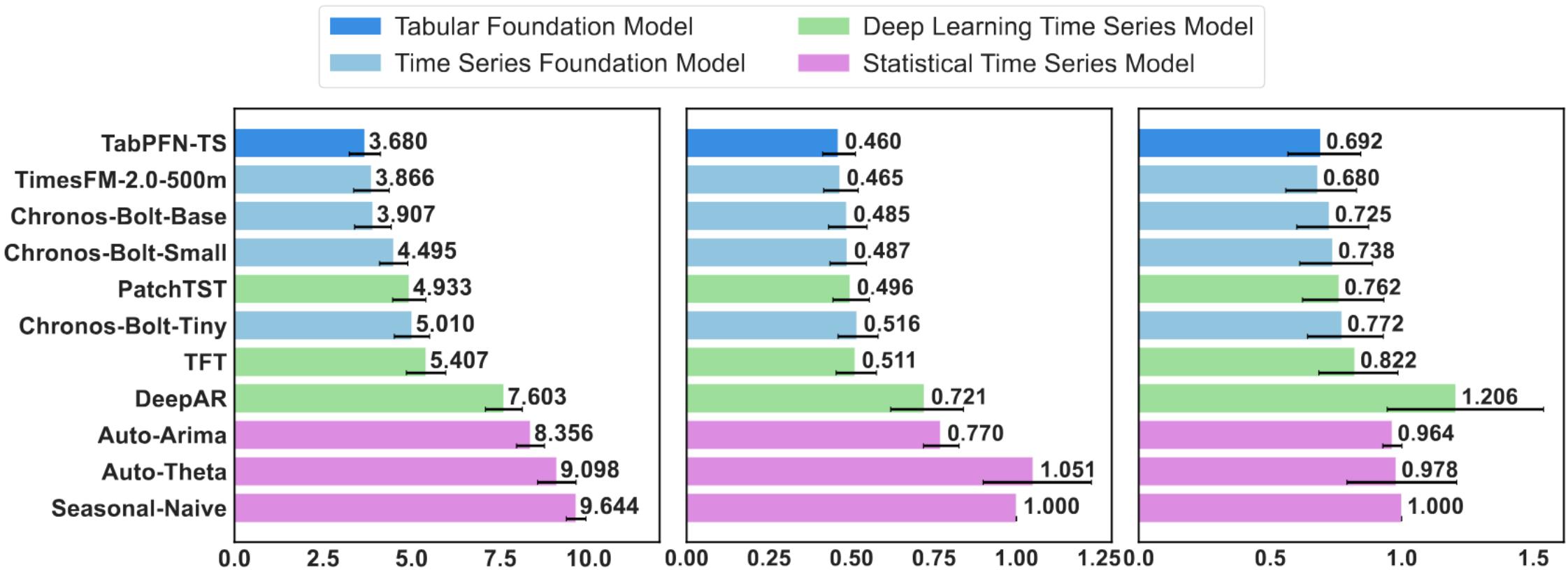
You said PFN?

- Many followup works!
- Mothernet, Gamformer, TabForest, TabDPT, TabICL, ContextTab, Mitra, EquiTabPFN, ...
- Some applications:
 - Time-series (TabPFN-TS Shi-Bin-Hoo 2025)



You said PFN?

- Many followup works!
- Mothernet, Gamformer, TabForest, TabDPT, TabICL, ContextTab, Mitra, EquiTabPFN, ...
- Some applications:
 - Time-series (TabPFN-TS Shi-Bin-Hoo 2025)

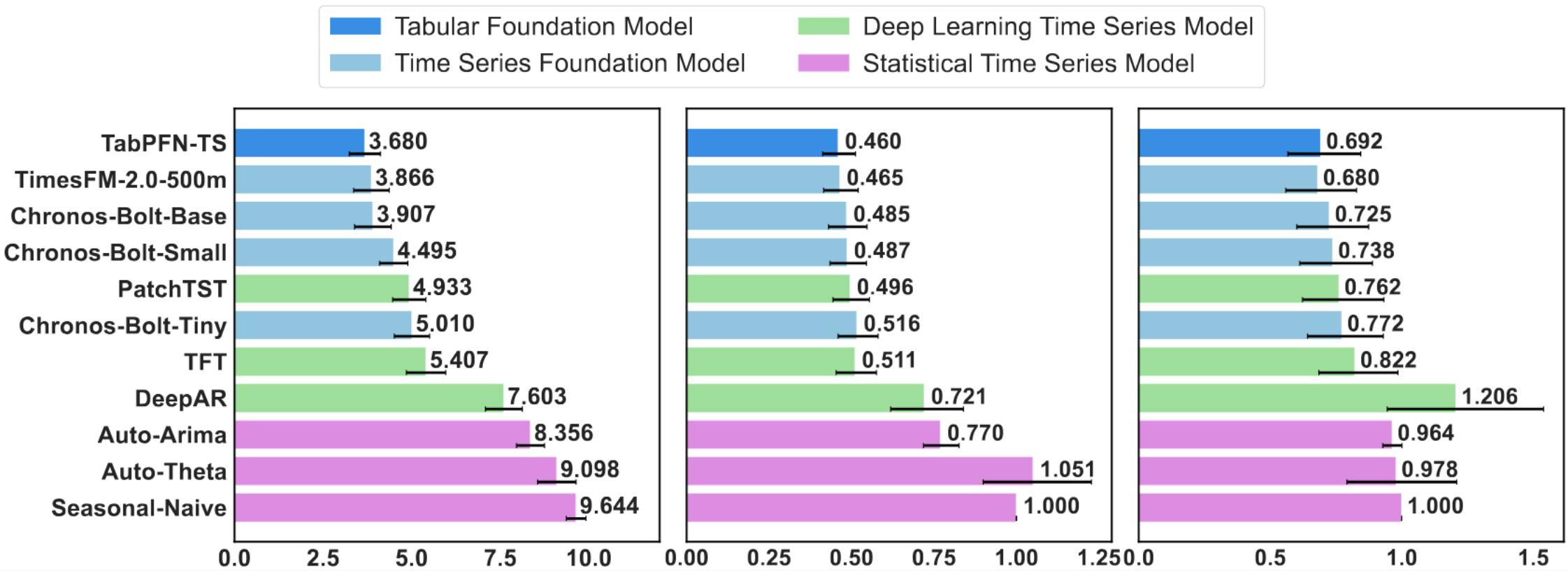


TabPFN-TS was the top method on gift-eval for several month outperforming foundational time-series method 😱

Not the case anymore, also it was quite slow

You said PFN?

- Many followup works!
- Mothernet, Gamformer, TabForest, TabDPT, TabICL, ContextTab, Mitra, EquiTabPFN, ...
- Some applications:
 - Time-series (TabPFN-TS Shi-Bin-Hoo 2025)



TabPFN-TS was the top method on gift-eval for several month outperforming foundational time-series method 😱

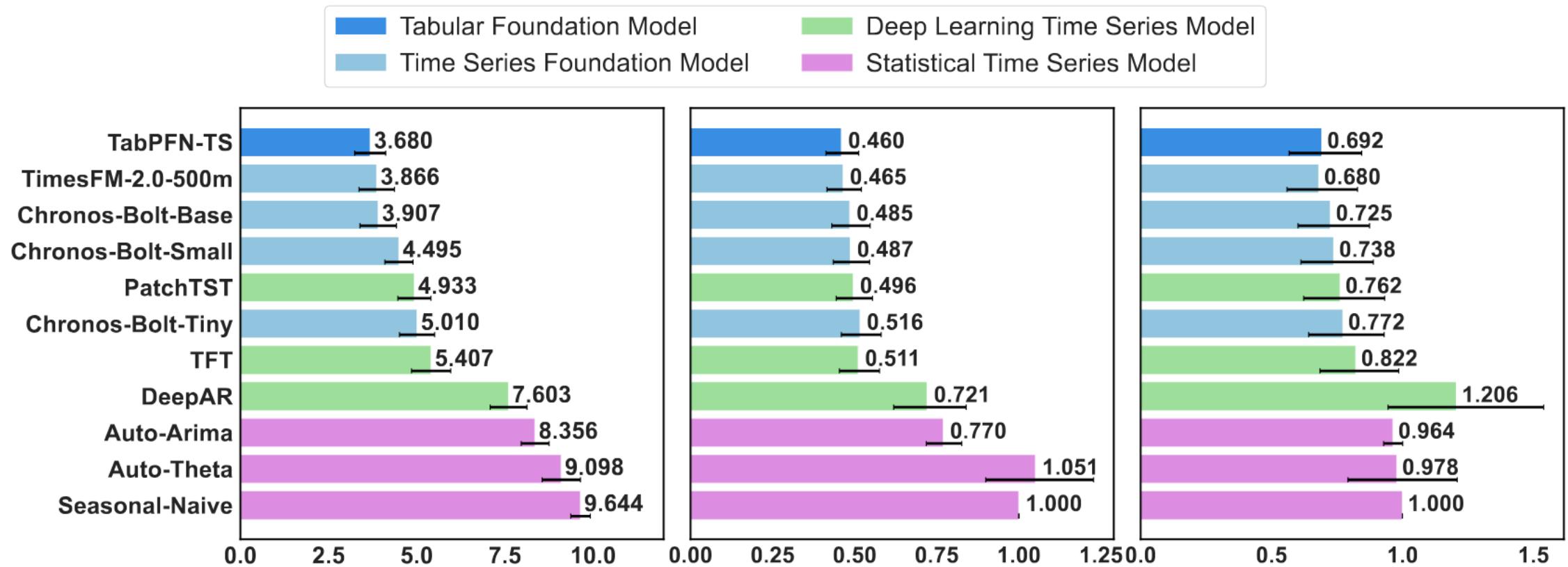
Not the case anymore, also it was quite slow

Model	# of Params.
Chronos-Bolt-Tiny	9M
TabPFN-TS	11M
Chronos-Bolt-Small	48M
Chronos-Bolt-Base	205M
TimesFM-2.0	500M

Table 1: Model size comparison of various time series foundation models. TabPFN-TS is among the smaller models, with a similar size to Chronos-Bolt-Tiny

You said PFN?

- Many followup works!
- Mothernet, Gamformer, TabForest, TabDPT, TabICL, ContextTab, Mitra, EquiTabPFN, ...
- Some applications:
 - Time-series (TabPFN-TS Shi-Bin-Hoo 2025)
 - Statistics (Zhang 2025)



TabPFN-TS was the top method on gift-eval for several month outperforming foundational time-series method 😱

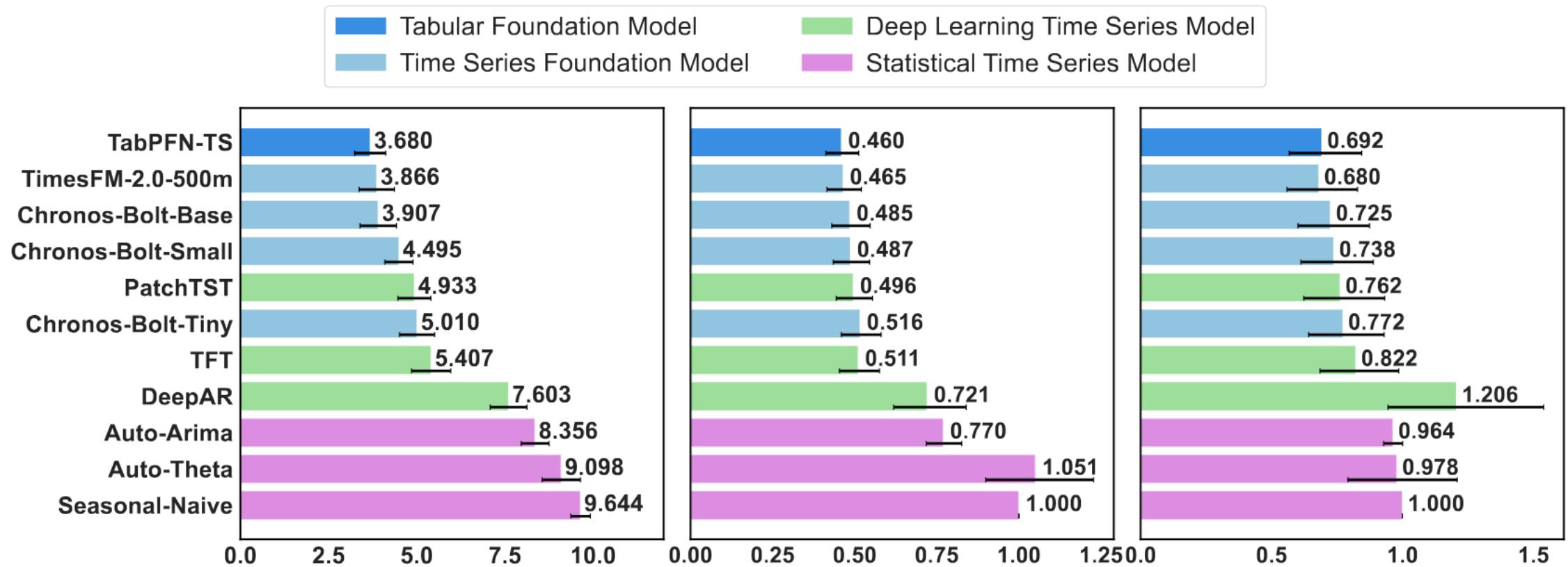
Not the case anymore, also it was quite slow

Model	# of Params.
Chronos-Bolt-Tiny	9M
TabPFN-TS	11M
Chronos-Bolt-Small	48M
Chronos-Bolt-Base	205M
TimesFM-2.0	500M

Table 1: Model size comparison of various time series foundation models. TabPFN-TS is among the smaller models, with a similar size to Chronos-Bolt-Tiny

You said PFN?

- Many followup works!
- Mothernet, Gamformer, TabForest, TabDPT, TabICL, ContextTab, Mitra, EquiTabPFN, ...
- Some applications:
 - Time-series (TabPFN-TS Shi-Bin-Hoo 2025)
 - Statistics (Zhang 2025)
 - Causal discovery (Robertson 2025)



TabPFN-TS was the top method on gift-eval for several month outperforming foundational time-series method 😱

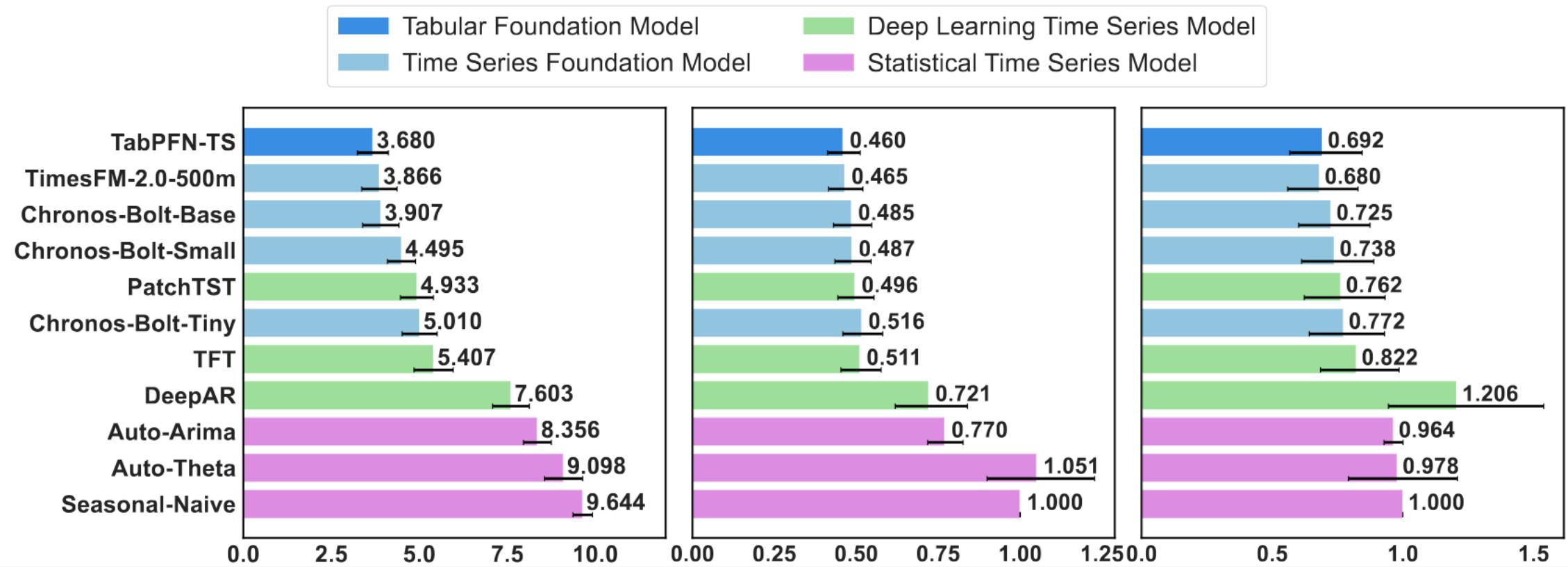
Not the case anymore, also it was quite slow

Model	# of Params.
Chronos-Bolt-Tiny	9M
TabPFN-TS	11M
Chronos-Bolt-Small	48M
Chronos-Bolt-Base	205M
TimesFM-2.0	500M

Table 1: Model size comparison of various time series foundation models. TabPFN-TS is among the smaller models, with a similar size to Chronos-Bolt-Tiny

You said PFN?

- Many followup works!
- Mothernet, Gamformer, TabForest, TabDPT, TabICL, ContextTab, Mitra, EquiTabPFN, ...
- Some applications:
 - Time-series (TabPFN-TS Shi-Bin-Hoo 2025)
 - Statistics (Zhang 2025)
 - Causal discovery (Robertson 2025)
 - Hyperparameter optimization (Muller 2023)



TabPFN-TS was the top method on gift-eval for several month outperforming foundational time-series method 😱

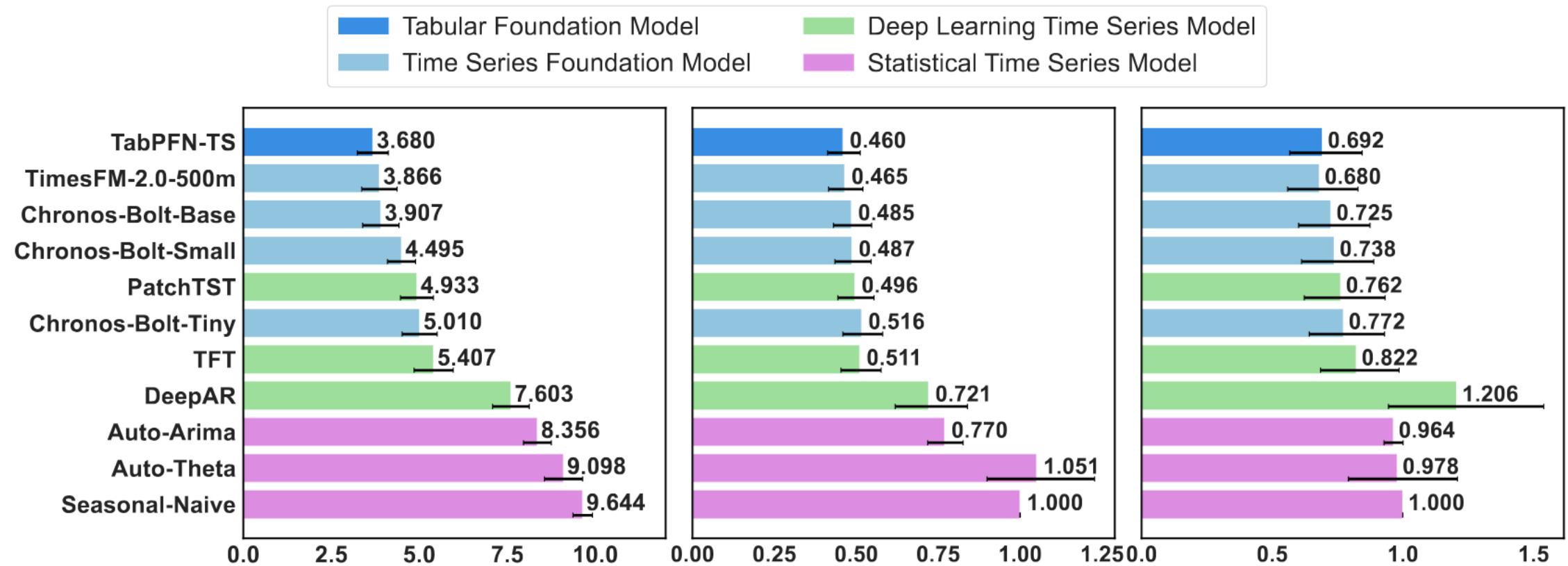
Not the case anymore, also it was quite slow

Model	# of Params.
Chronos-Bolt-Tiny	9M
TabPFN-TS	11M
Chronos-Bolt-Small	48M
Chronos-Bolt-Base	205M
TimesFM-2.0	500M

Table 1: Model size comparison of various time series foundation models. TabPFN-TS is among the smaller models, with a similar size to Chronos-Bolt-Tiny

You said PFN?

- Many followup works!
- Mothernet, Gamformer, TabForest, TabDPT, TabICL, ContextTab, Mitra, EquiTabPFN, ...
- Some applications:
 - Time-series (TabPFN-TS Shi-Bin-Hoo 2025)
 - Statistics (Zhang 2025)
 - Causal discovery (Robertson 2025)
 - Hyperparameter optimization (Muller 2023)
 - ...



TabPFN-TS was the top method on gift-eval for several month outperforming foundational time-series method 😱

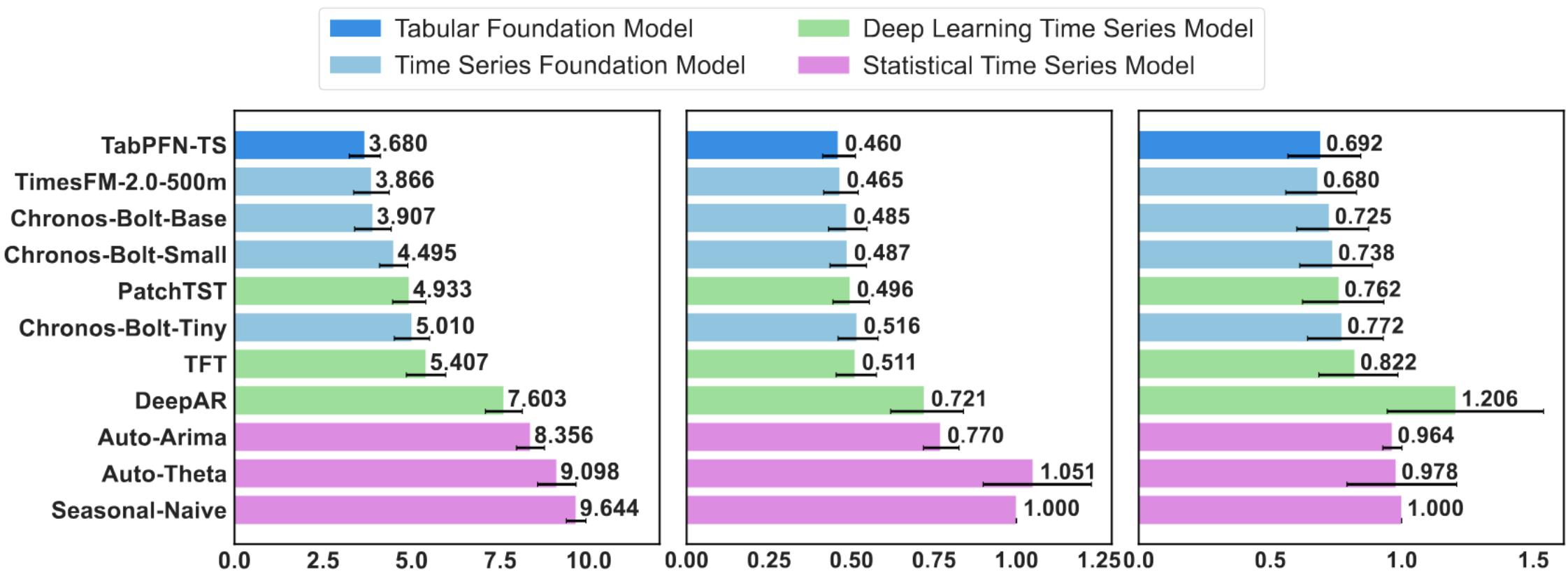
Not the case anymore, also it was quite slow

Model	# of Params.
Chronos-Bolt-Tiny	9M
TabPFN-TS	11M
Chronos-Bolt-Small	48M
Chronos-Bolt-Base	205M
TimesFM-2.0	500M

Table 1: Model size comparison of various time series foundation models. TabPFN-TS is among the smaller models, with a similar size to Chronos-Bolt-Tiny

You said PFN?

- Many followup works!
- Mothernet, Gamformer, TabForest, TabDPT, TabICL, ContextTab, Mitra, EquiTabPFN, ...
- Some applications:
 - Time-series (TabPFN-TS Shi-Bin-Hoo 2025)
 - Statistics (Zhang 2025)
 - Causal discovery (Robertson 2025)
 - Hyperparameter optimization (Muller 2023)
 - ...
 - From Benchmarks to Problems - A Perspective on Problem Finding in AI (Kyunghyun Cho - NeurIPS invited talk 2025)



TabPFN-TS was the top method on gift-eval for several month outperforming foundational time-series method 😱

Not the case anymore, also it was quite slow

Model	# of Params.
Chronos-Bolt-Tiny	9M
TabPFN-TS	11M
Chronos-Bolt-Small	48M
Chronos-Bolt-Base	205M
TimesFM-2.0	500M

Table 1: Model size comparison of various time series foundation models. TabPFN-TS is among the smaller models, with a similar size to Chronos-Bolt-Tiny

EquiTabPFN, dealing with the lack of equivariance of PFNs

EquiTabPFN: A Target-Permutation Equivariant Prior Fitted Network

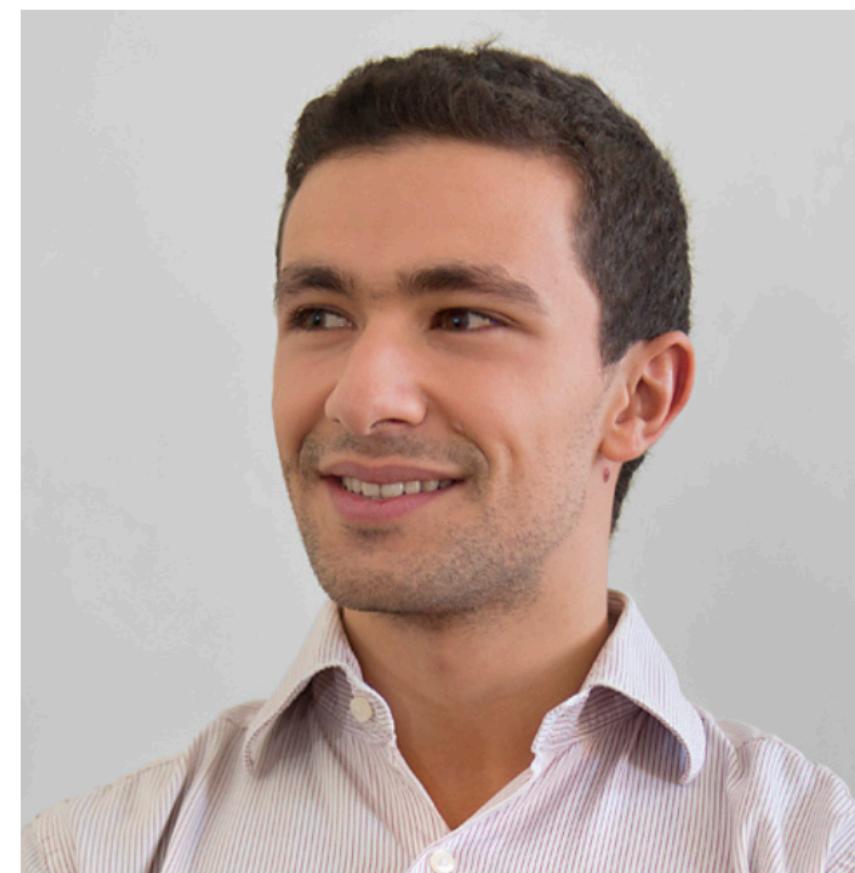
NeurIPS 2025

Michael Arbel^{*1} **David Salinas**^{*2,3} **Frank Hutter**^{2,3,4}

¹INRIA ²University of Freiburg ³ELLIS Institute Tübingen ⁴PriorLabs

*Equal contribution

Michael Arbel^{*1}



David Salinas^{*2,3}

Frank Hutter^{2,3,4}

EquiTabPFN

Did you say equivariant?

- In tabular tasks, the ordering of target components is **arbitrary**
- Models should give identical predictions under any permutation of target!

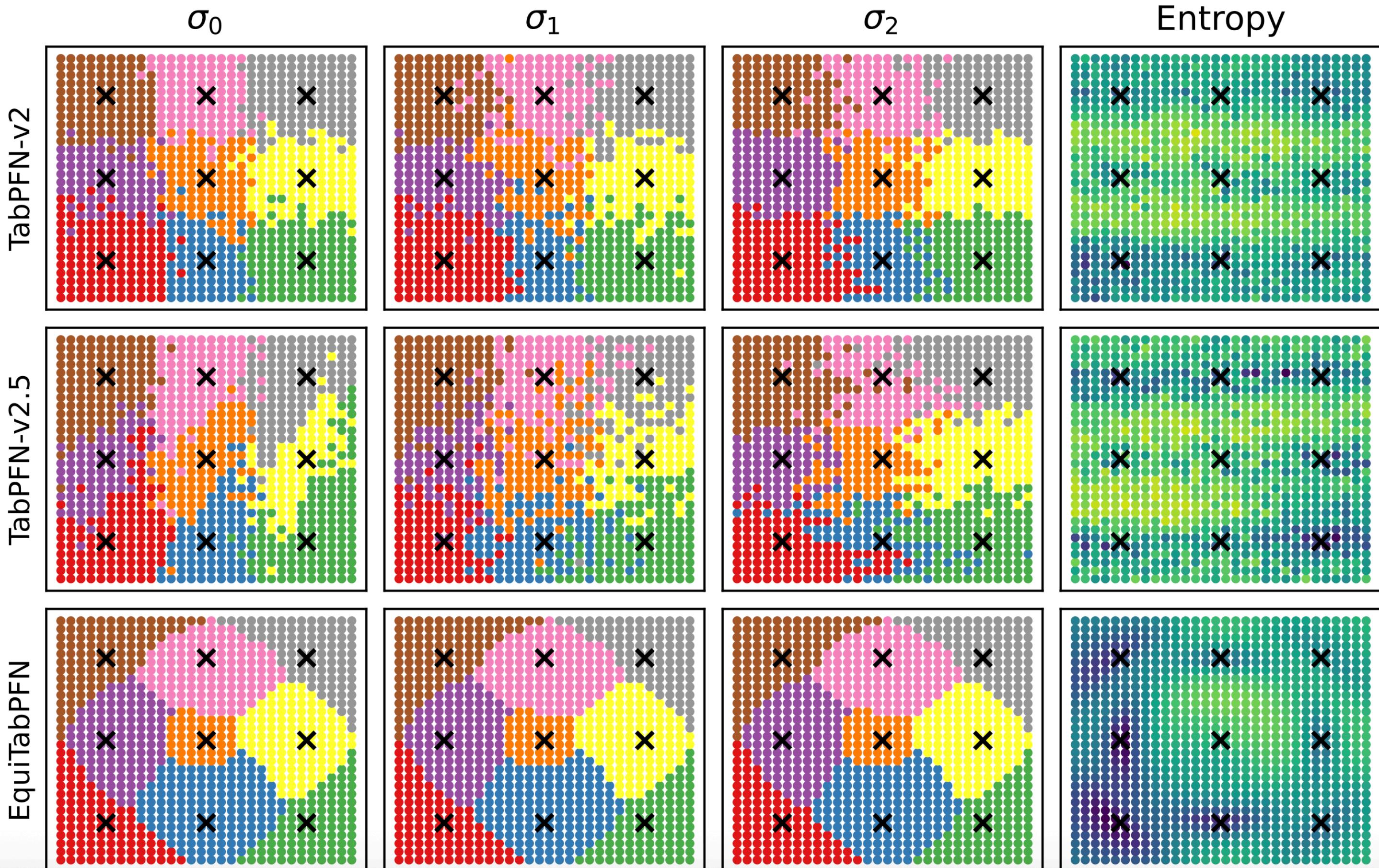
Definition

Denote $Y^* = f_{X,Y}(X^*)$ the predictions of a PFN on test features X^* given a training dataset X, Y .

A PFN is *target-equivariant* if $\sigma(Y^*) = f_{X,\sigma(Y)}(X^*)$ for all permutations σ

Prediction instabilities

- Training sets with 9 examples, each own class, features in \mathbb{R}^2
- Shows predictions of $\sigma^{-1}(f_{X,\sigma(Y)}(X^*))$
- Should be identical for different σ !



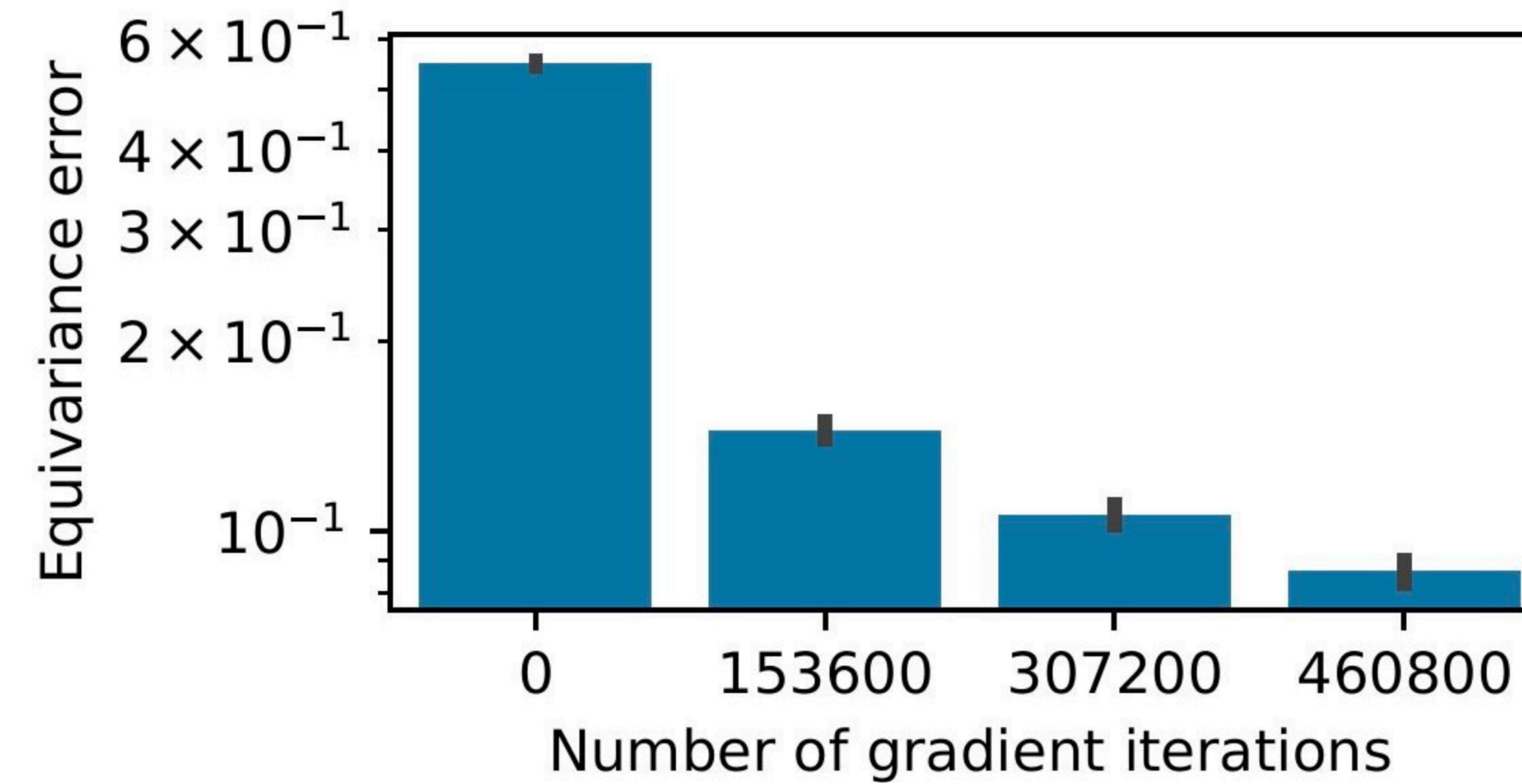
Predictions stable
w.r.t. target class
encoding

Entropy and
probabilities smooth
w.r.t. distance to
features

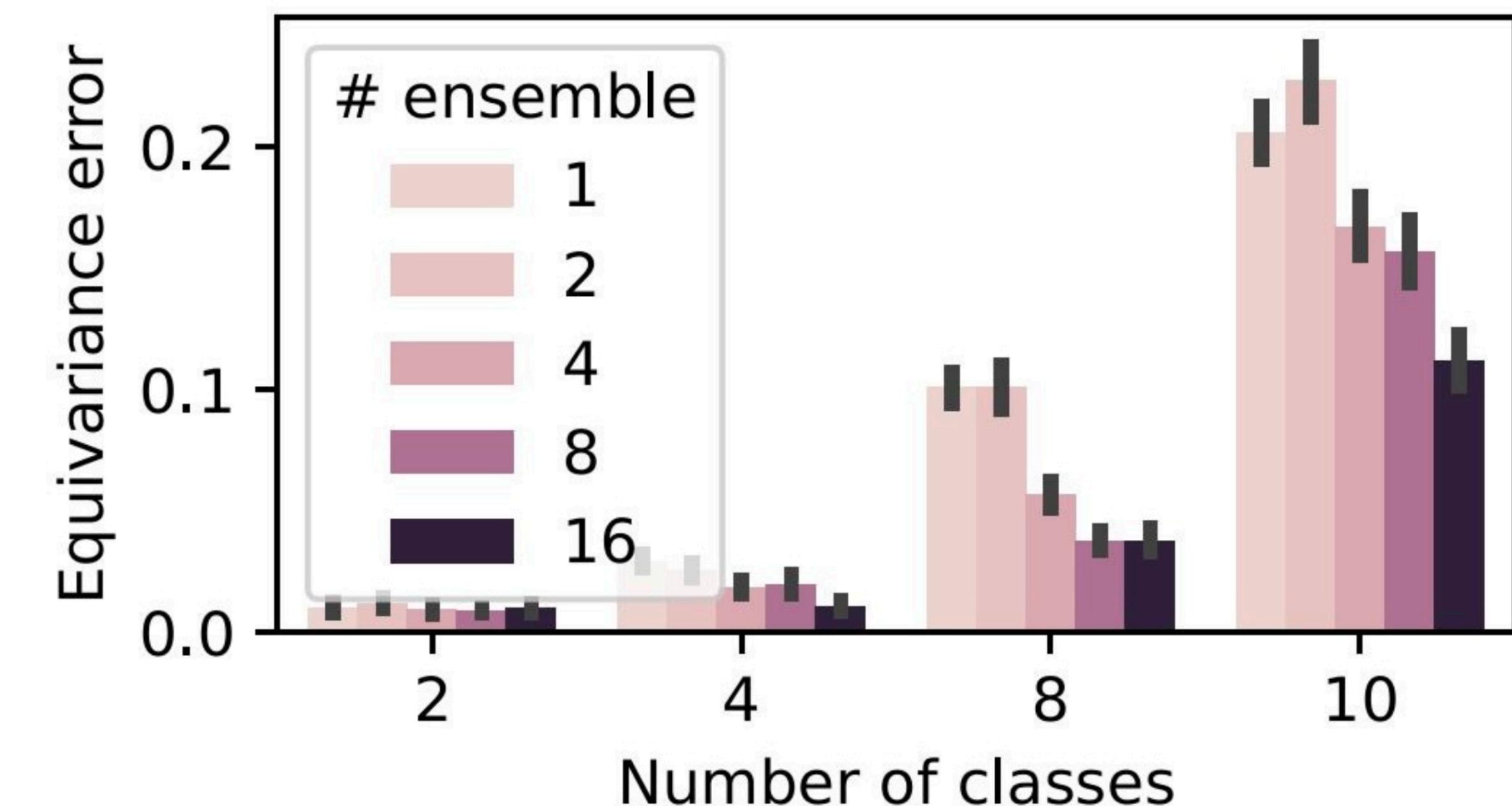
Can you just train longer? Or just ensemble more?

No...

Would get to zero with
 $\mathcal{O}(m!)$ ensembles



Equivariance error while training



Equivariance error when ensembling

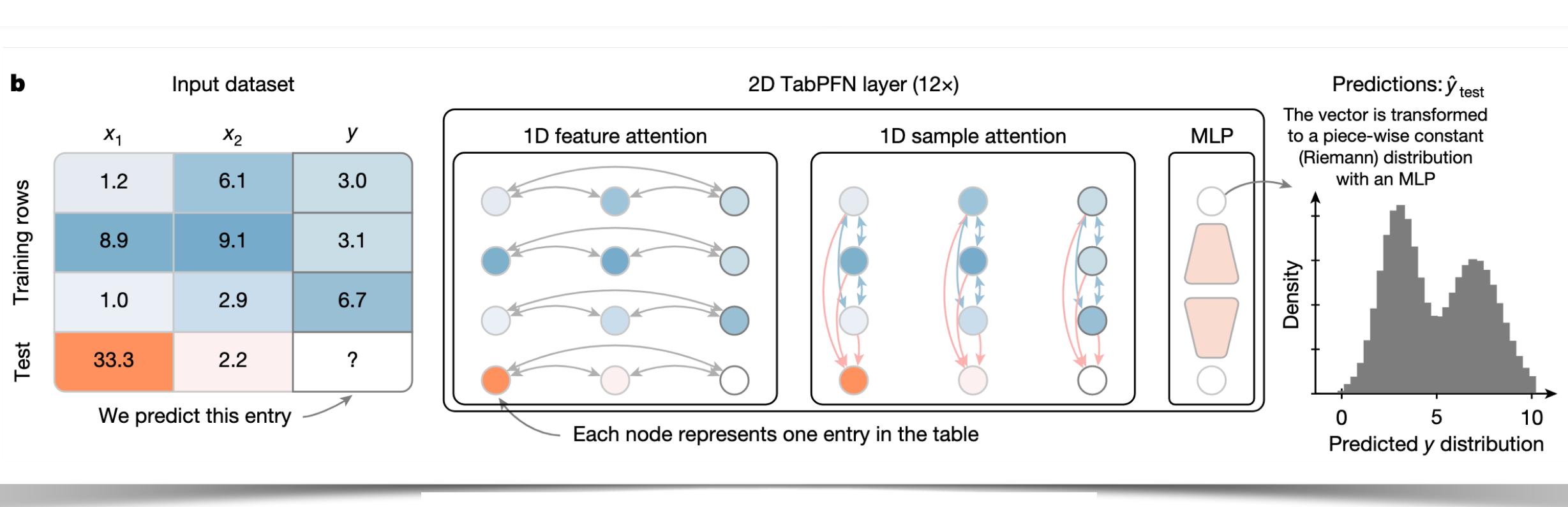
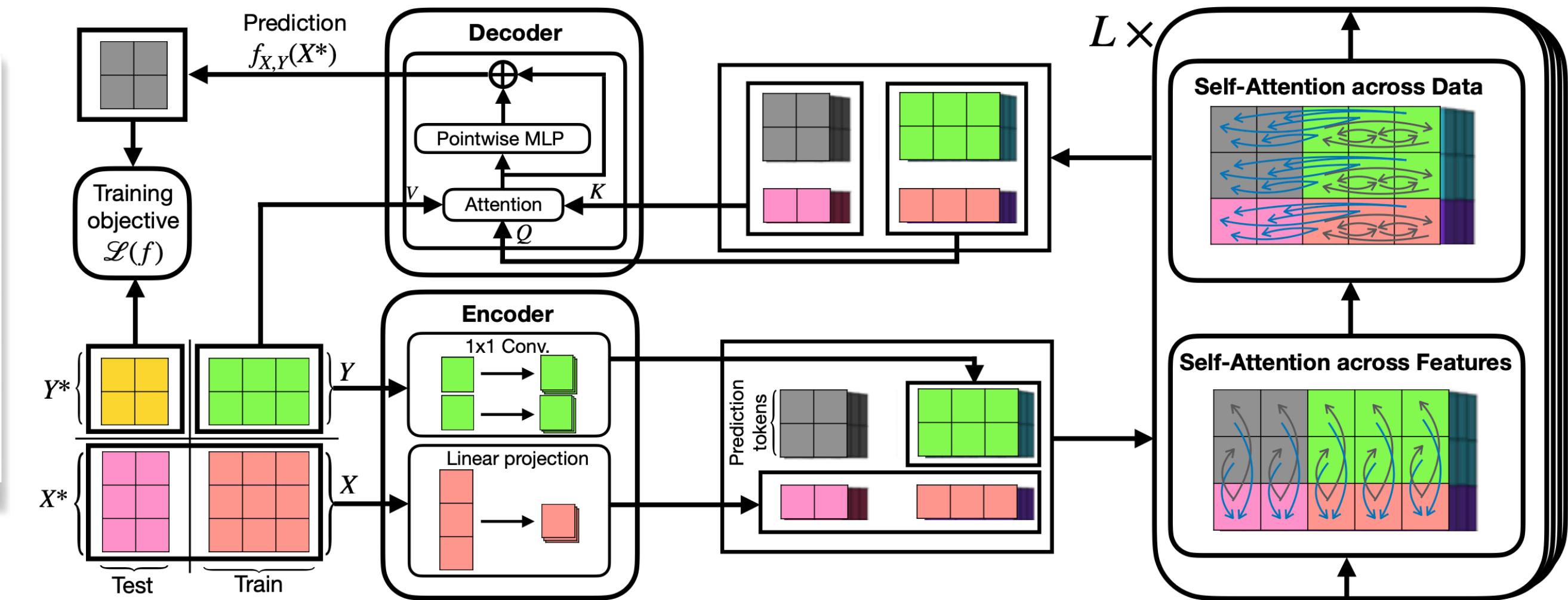
The cost of not being equivariant

Proposition

Under mild assumptions—convex, permutation-invariant loss ℓ and a target permutations-invariant data distribution—the optimal solution to the PFN pre-training objective is necessarily target equivariant.

Proposed Architecture

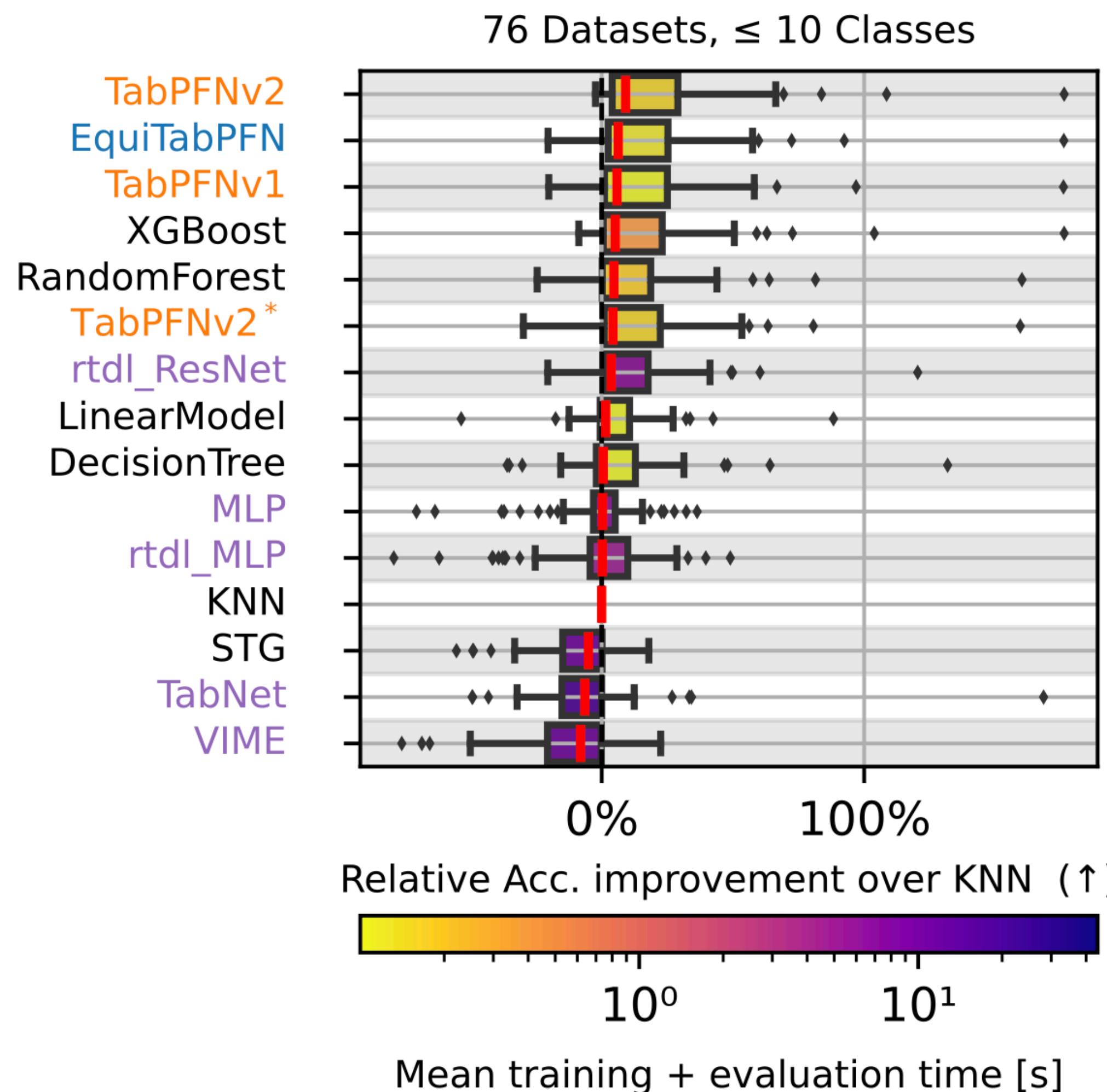
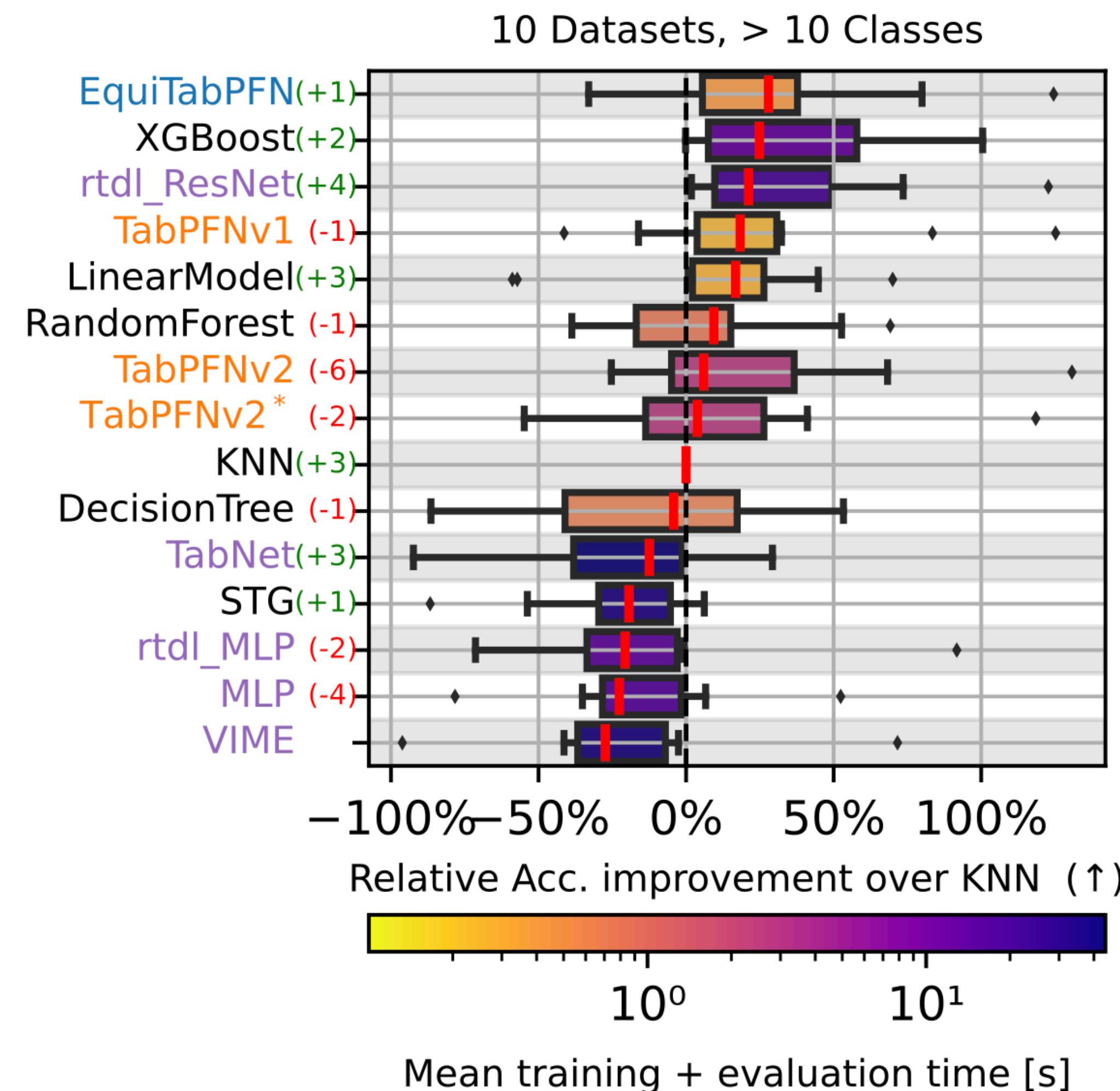
- Alternate attention over rows and target dimensions
- Equivariant to target permutations
- Handle any number of target
- Output obtained by weighting input labels by similarity



TabPFN-v2: alternate attention over rows / features

Ours: alternate attention over rows / target dimensions
+ non parametric output, weighted by similarity

Enabling ICL on data with unseen class counts



Conclusion

- Handling target equivariance allows to:
 - Obtain stable predictions with respect to target permutation
 - Perform inference on any number of classes, not just the ones seen in training
- Future work:
 - Handle multivariate regression
 - Equivariance to feature symmetry $x \rightarrow 1 - x$
 - Single model for regression and classification
- Code available: <https://github.com/MichaelArbel/EquiTabPFN/>

Tabular Benchmarking

What is the best Tabular method?

Cost of benchmarking

- AutoML Benchmark [Ginsberg et al 2023] considered 71 classification and 33 regression datasets

What is the best Tabular method?

Cost of benchmarking

- AutoML Benchmark [Ginsberg et al 2023] considered 71 classification and 33 regression datasets

Journal of Machine Learning Research 1 (2000) 1-48

Submitted 4/00; Published 10/00

AMLB: an AutoML Benchmark

Pieter Gijsbers¹

P.GIJSBERS@TUE.NL

Marcos L. P. Bueno^{1,4}

MARCOS.DEPAULABUENO@DONDERS.RU.NL

Stefan Coors²

STEFAN.COORS@STAT.UNI-MUENCHEN.DE

Erin LeDell³

ERIN@H2O.AI

Sébastien Poirier³

SEBASTIEN@H2O.AI

Janek Thomas²

JANEK.THOMAS@STAT.UNI-MUENCHEN.DE

Bernd Bischl²

BERND.BISCHL@STAT.UNI-MUENCHEN.DE

Joaquin Vanschoren¹

J.VANSCHOREN@TUE.NL

¹ EINDHOVEN UNIVERSITY OF TECHNOLOGY, EINDHOVEN, THE NETHERLANDS

² LUDWIG MAXIMILIAN UNIVERSITY OF MUNICH, MUNICH, GERMANY

³ H2O.AI, MOUNTAIN VIEW, CA, UNITED STATES

⁴ RADBOUD UNIVERSITY, NIJMEGEN, THE NETHERLANDS

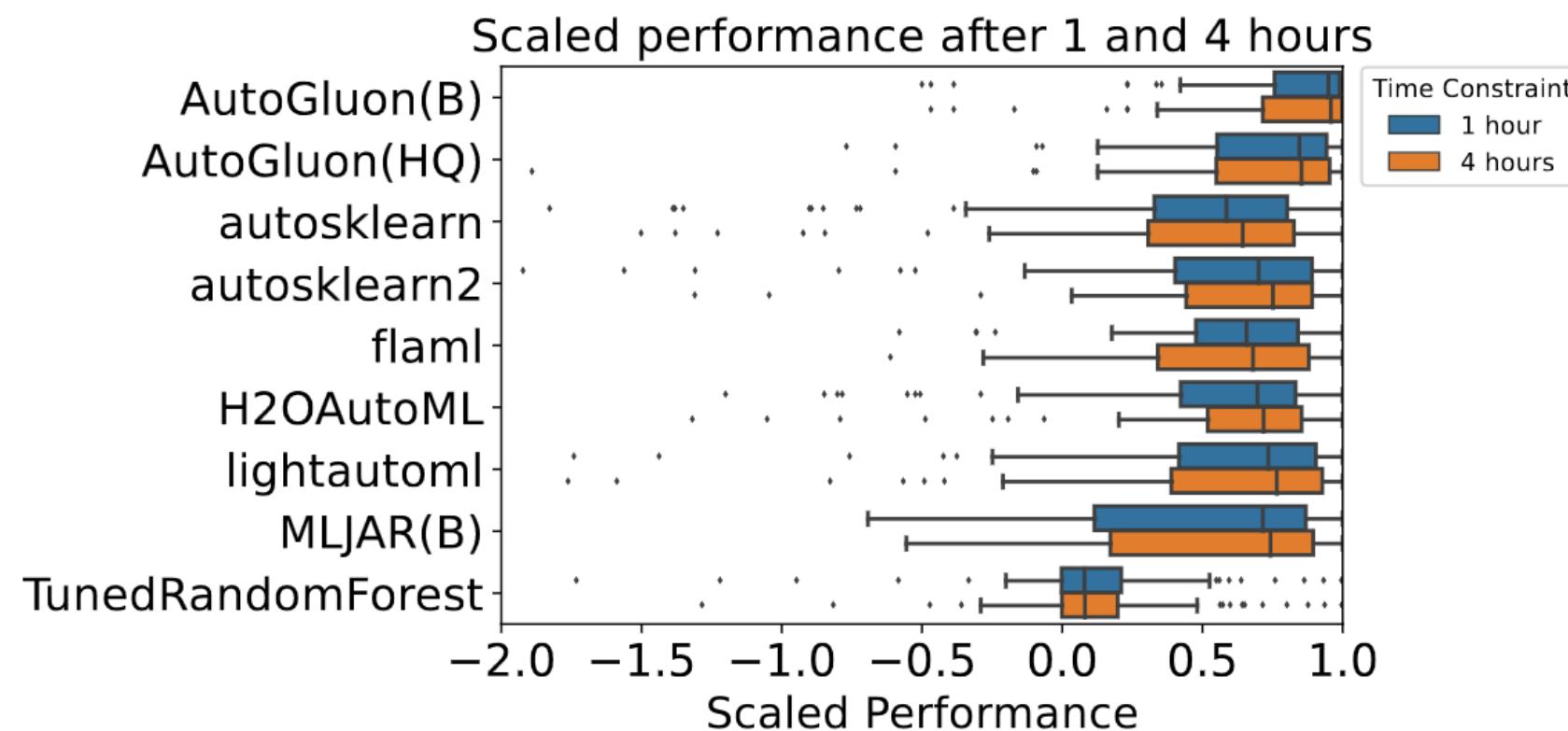
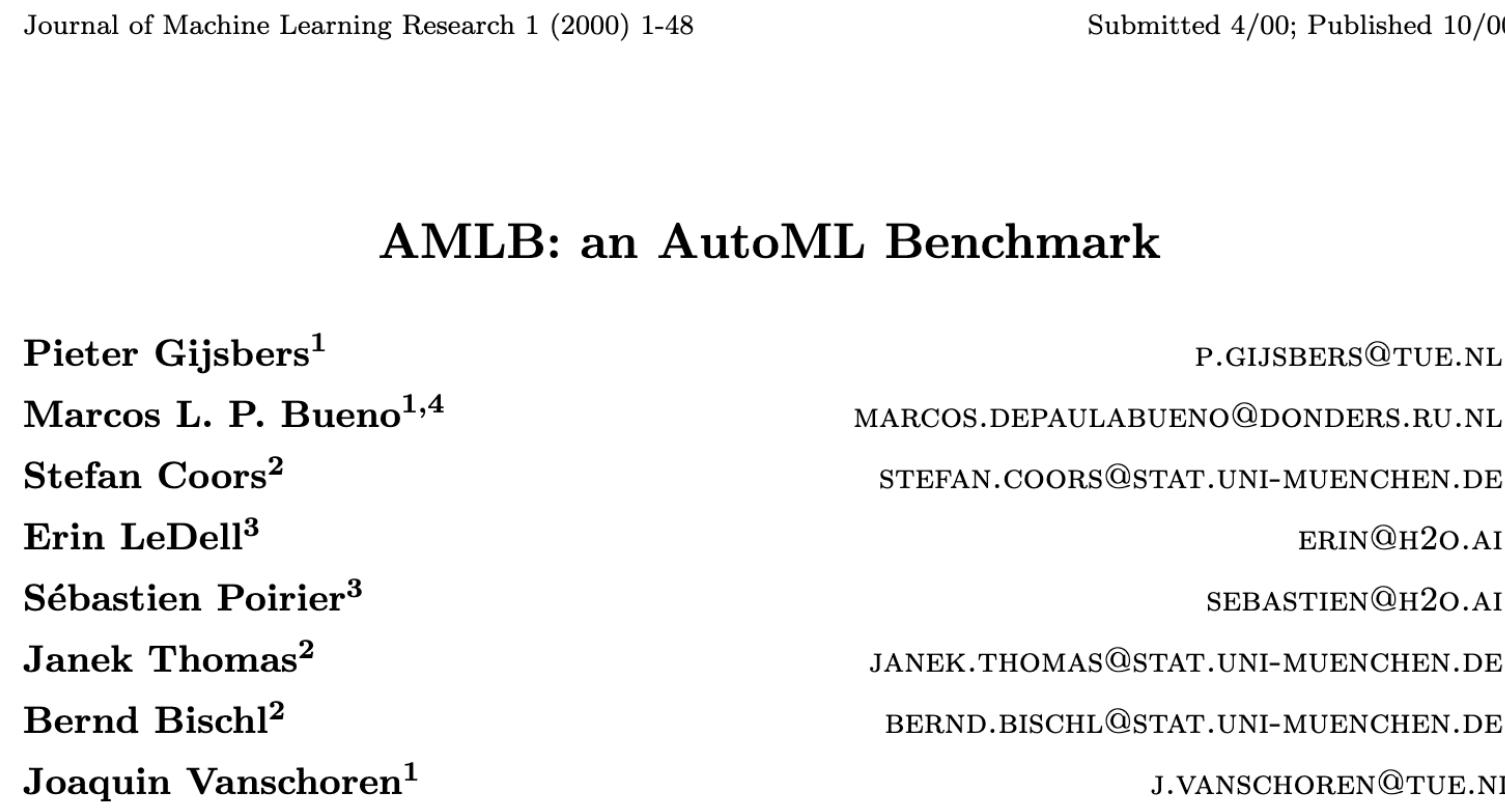
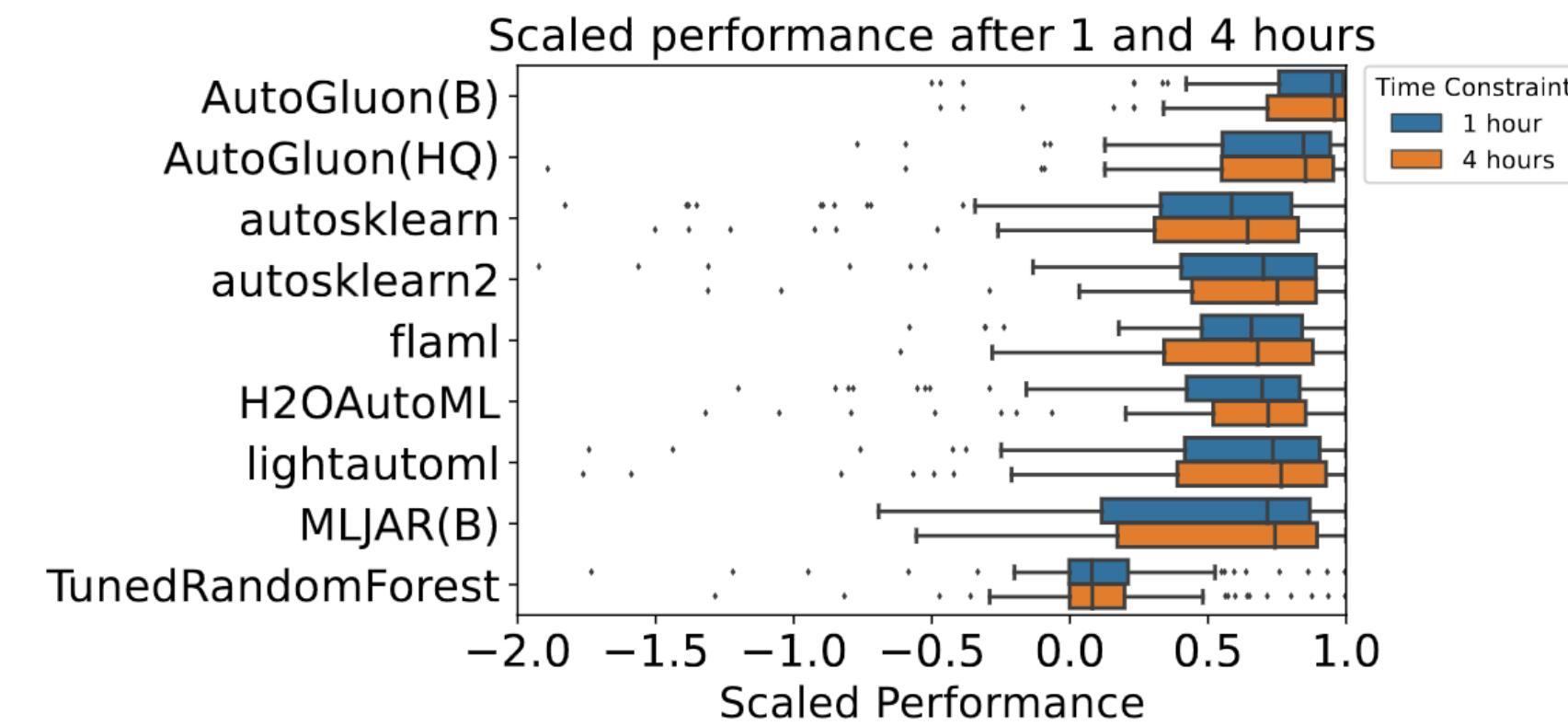


Figure 4: Scaled performance for each framework under different time constraints. Only frameworks which have evaluations on all tasks for both time constraints are shown. Performance generally does not improve much with more time.

What is the best Tabular method?

Cost of benchmarking

- AutoML Benchmark [Ginsberg et al 2023] considered 71 classification and 33 regression datasets



Evaluating a single method costs 40K CPU hours of compute!

Figure 4: Scaled performance for each framework under different time constraints. Only frameworks which have evaluations on all tasks for both time constraints are shown. Performance generally does not improve much with more time.

¹ EINDHOVEN UNIVERSITY OF TECHNOLOGY, EINDHOVEN, THE NETHERLANDS

² LUDWIG MAXIMILIAN UNIVERSITY OF MUNICH, MUNICH, GERMANY

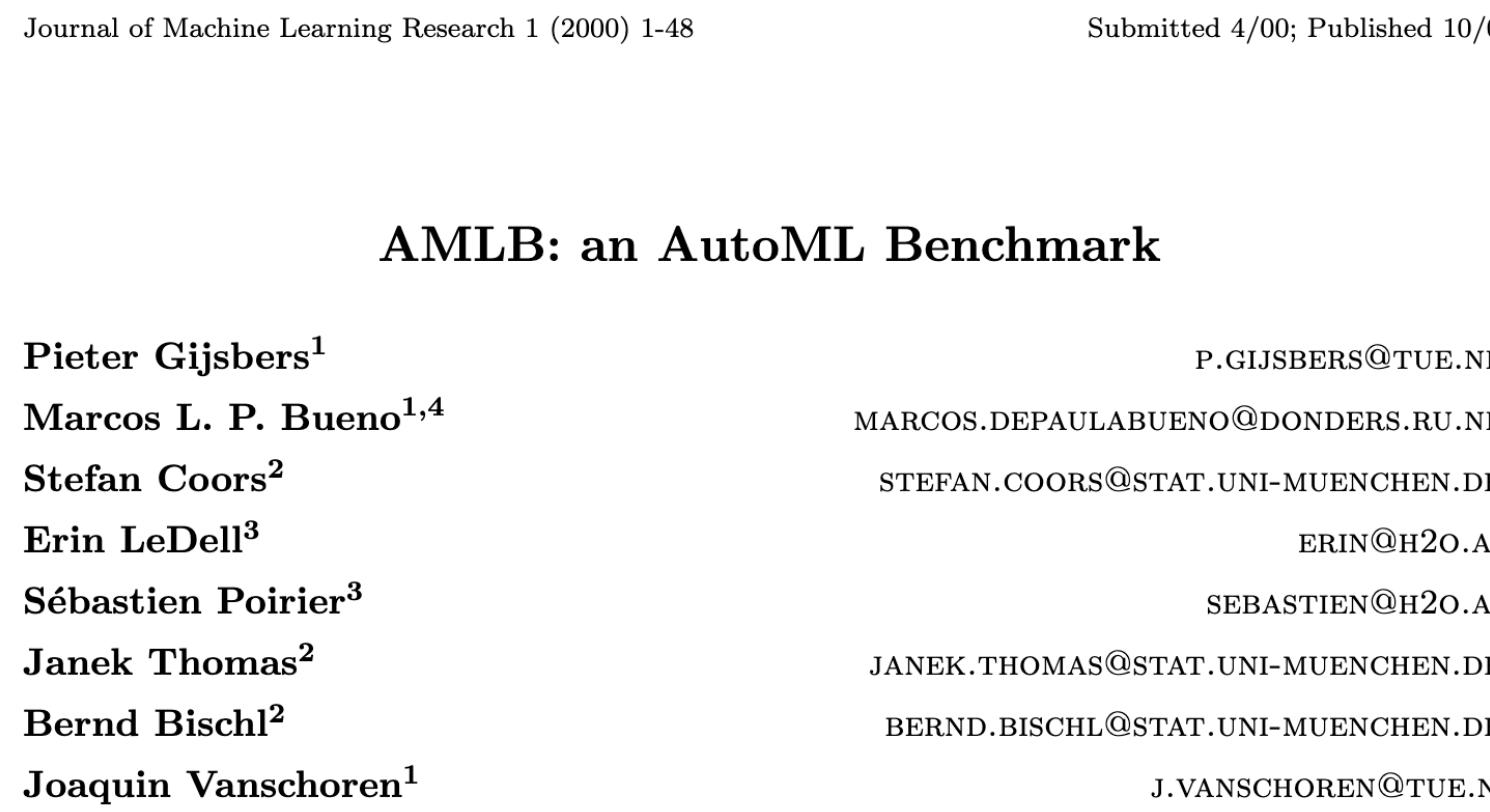
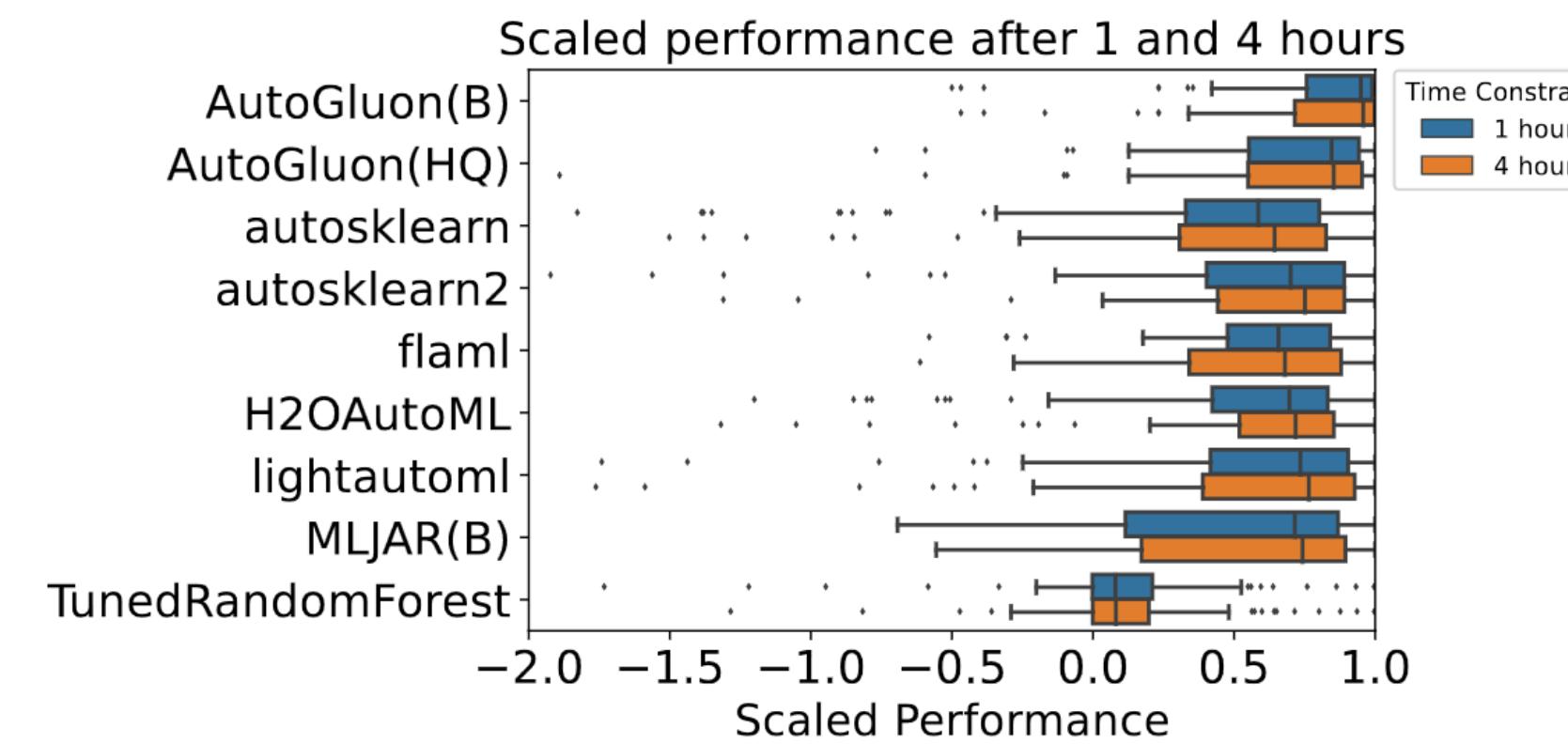
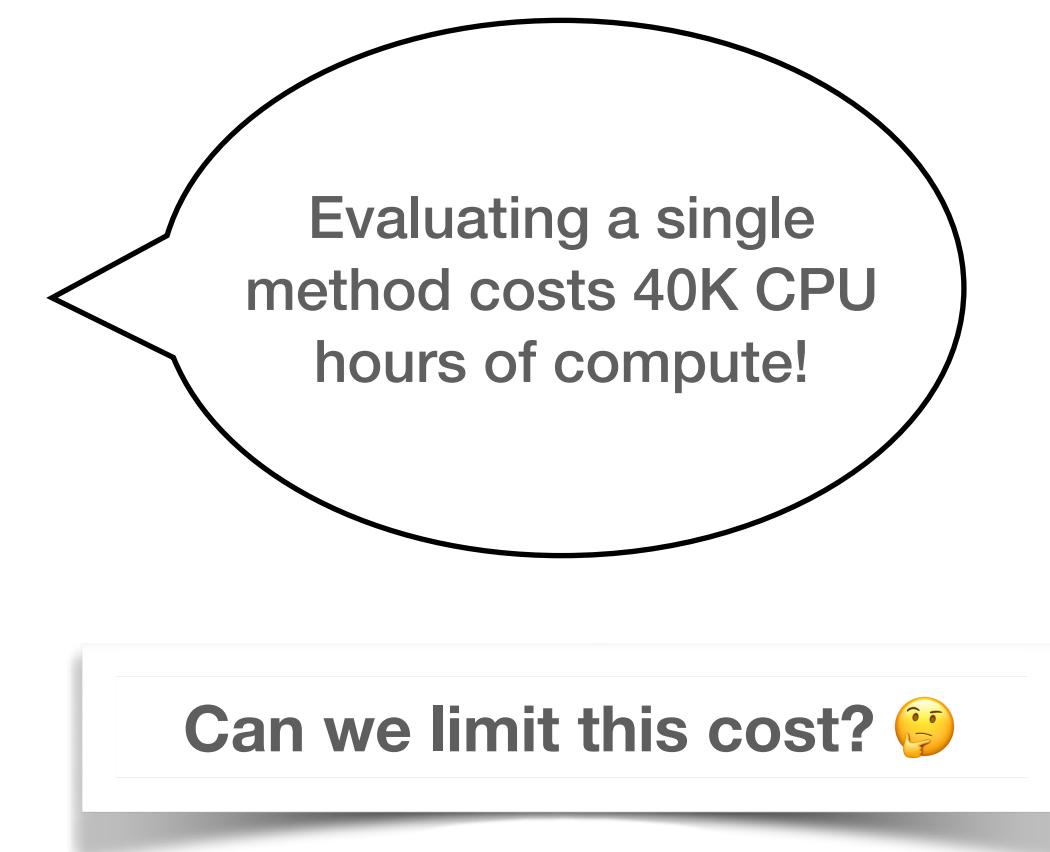
³ H2O.AI, MOUNTAIN VIEW, CA, UNITED STATES

⁴ RADBOUD UNIVERSITY, NIJMEGEN, THE NETHERLANDS

What is the best Tabular method?

Cost of benchmarking

- AutoML Benchmark [Ginsberg et al 2023] considered 71 classification and 33 regression datasets



¹ EINDHOVEN UNIVERSITY OF TECHNOLOGY, EINDHOVEN, THE NETHERLANDS

² LUDWIG MAXIMILIAN UNIVERSITY OF MUNICH, MUNICH, GERMANY

³ H2O.AI, MOUNTAIN VIEW, CA, UNITED STATES

⁴ RADBOUD UNIVERSITY, NIJMEGEN, THE NETHERLANDS

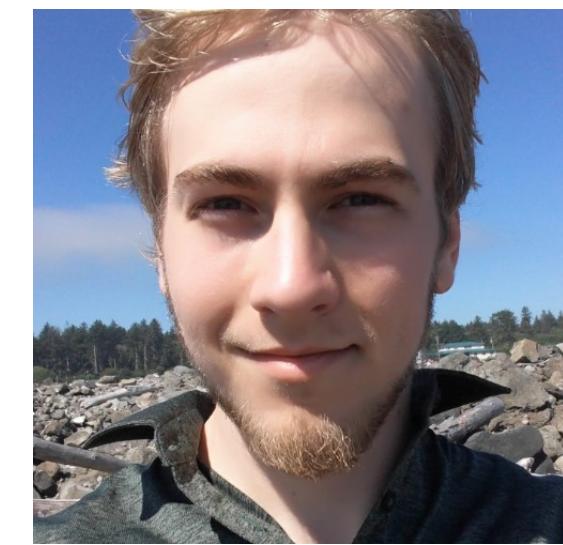
Figure 4: Scaled performance for each framework under different time constraints. Only frameworks which have evaluations on all tasks for both time constraints are shown. Performance generally does not improve much with more time.

TabRepo

TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications

David Salinas^{1,*} Nick Erickson^{1,*}

AutoML Conf 2023



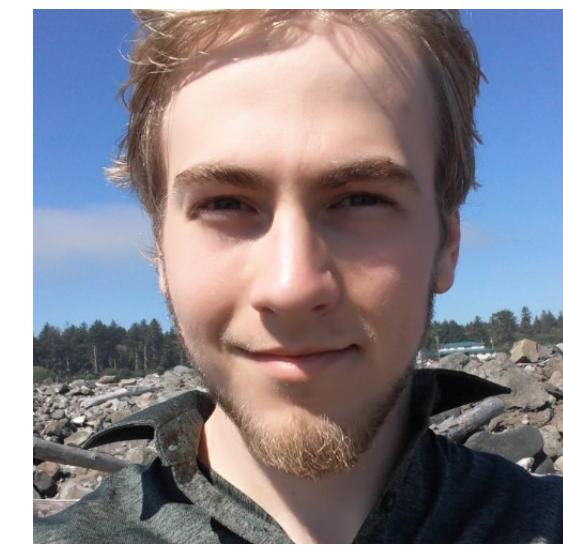
TabRepo

TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications

David Salinas^{1,*} Nick Erickson^{1,*}

- Goals:

AutoML Conf 2023



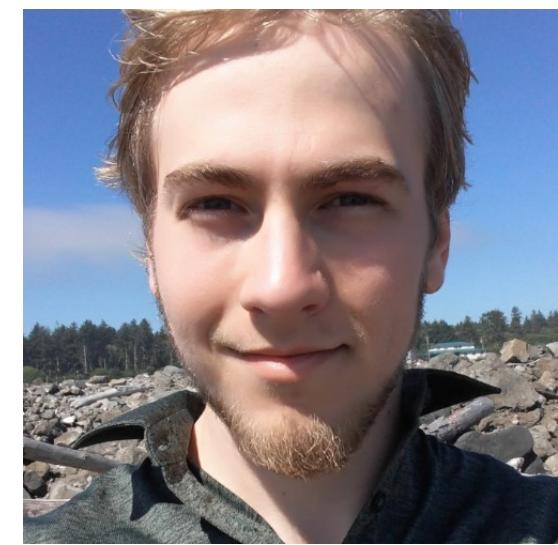
TabRepo

TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications

David Salinas^{1,*} Nick Erickson^{1,*}

- Goals:
 - 1) reduce cost of evaluation

AutoML Conf 2023



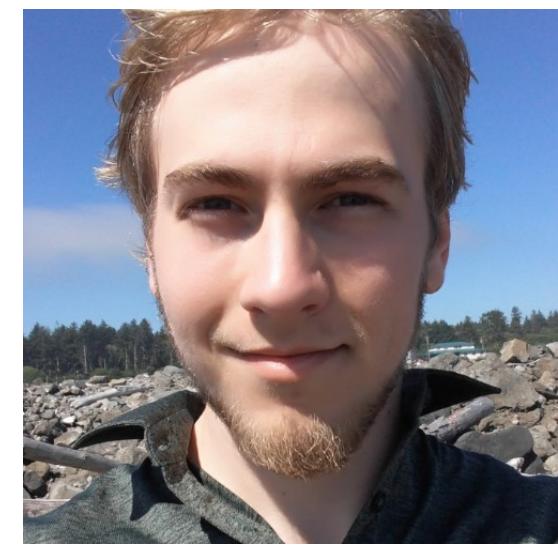
TabRepo

TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications

David Salinas^{1,*} Nick Erickson^{1,*}

- Goals:
 - 1) reduce cost of evaluation
 - 2) improve over the default hyperparameters of AutoGluon/AutoML systems

AutoML Conf 2023



TabRepo

TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications

David Salinas^{1,*} Nick Erickson^{1,*}

- Goals:
 - 1) reduce cost of evaluation
 - 2) improve over the default hyperparameters of AutoGluon/AutoML systems
- Precomputed evaluations and results on:

AutoML Conf 2023

TabRepo

TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications

David Salinas^{1,*} Nick Erickson^{1,*}

- Goals:
 - 1) reduce cost of evaluation
 - 2) improve over the default hyperparameters of AutoGluon/AutoML systems
- Precomputed evaluations and results on:
 - 200 datasets from regression, classification, multi-class (thanks OpenML 😊)

AutoML Conf 2023

TabRepo

TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications

David Salinas^{1,*} Nick Erickson^{1,*}

- Goals:
 - 1) reduce cost of evaluation
 - 2) improve over the default hyperparameters of AutoGluon/AutoML systems
- Precomputed evaluations and results on:
 - 200 datasets from regression, classification, multi-class (thanks OpenML 😊)
 - 200 random configurations of models used in AutoGluon (CatBoost, MLP, LightGBM, RandomForest, ...) on all datasets with 3 seeds

AutoML Conf 2023

TabRepo

TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications

David Salinas^{1,*} Nick Erickson^{1,*}

- Goals:
 - 1) reduce cost of evaluation
 - 2) improve over the default hyperparameters of AutoGluon/AutoML systems
- Precomputed evaluations and results on:
 - 200 datasets from regression, classification, multi-class (thanks OpenML 😊)
 - 200 random configurations of models used in AutoGluon (CatBoost, MLP, LightGBM, RandomForest, ...) on all datasets with 3 seeds
- Performance metrics (latency, accuracy, ...) **and predictions** available for every dataset, model, seed

AutoML Conf 2023

TabRepo

TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications

David Salinas^{1,*} Nick Erickson^{1,*}

- Goals:
 - 1) reduce cost of evaluation
 - 2) improve over the default hyperparameters of AutoGluon/AutoML systems
- Precomputed evaluations and results on:
 - 200 datasets from regression, classification, multi-class (thanks OpenML 😊)
 - 200 random configurations of models used in AutoGluon (CatBoost, MLP, LightGBM, RandomForest, ...) on all datasets with 3 seeds
- Performance metrics (latency, accuracy, ...) **and predictions** available for every dataset, model, seed
- ~100GB of data, ~200K CPU hours of compute

AutoML Conf 2023

TabRepo

TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications

David Salinas^{1,*} Nick Erickson^{1,*}

- Goals:
 - 1) reduce cost of evaluation
 - 2) improve over the default hyperparameters of AutoGluon/AutoML systems
- Precomputed evaluations and results on:
 - 200 datasets from regression, classification, multi-class (thanks OpenML 😊)
 - 200 random configurations of models used in AutoGluon (CatBoost, MLP, LightGBM, RandomForest, ...) on all datasets with 3 seeds
- Performance metrics (latency, accuracy, ...) **and predictions** available for every dataset, model, seed
- ~100GB of data, ~200K CPU hours of compute

AutoML Conf 2023

Storing predictions and target labels allows to obtain the performance of **any ensemble** on the fly!

TabRepo

TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications

David Salinas^{1,*} Nick Erickson^{1,*}

- Goals:
 - 1) reduce cost of evaluation
 - 2) improve over the default hyperparameters of AutoGluon/AutoML systems
- Precomputed evaluations and results on:
 - 200 datasets from regression, classification, multi-class (thanks OpenML 😊)
 - 200 random configurations of models used in AutoGluon (CatBoost, MLP, LightGBM, RandomForest, ...) on all datasets with 3 seeds
- Performance metrics (latency, accuracy, ...) **and predictions** available for every dataset, model, seed
- ~100GB of data, ~200K CPU hours of compute

Storing predictions and target labels allows to obtain the performance of **any ensemble** on the fly!

The dataset combined with **portfolio learning** allows to outperform Autogluon!

AutoML Conf 2023

TabRepo

Studying the effect of HPO and ensembling

TabRepo

Studying the effect of HPO and ensembling

Storing predictions and target labels allows to obtain the performance of **any ensemble** on the fly!

TabRepo

Studying the effect of HPO and ensembling

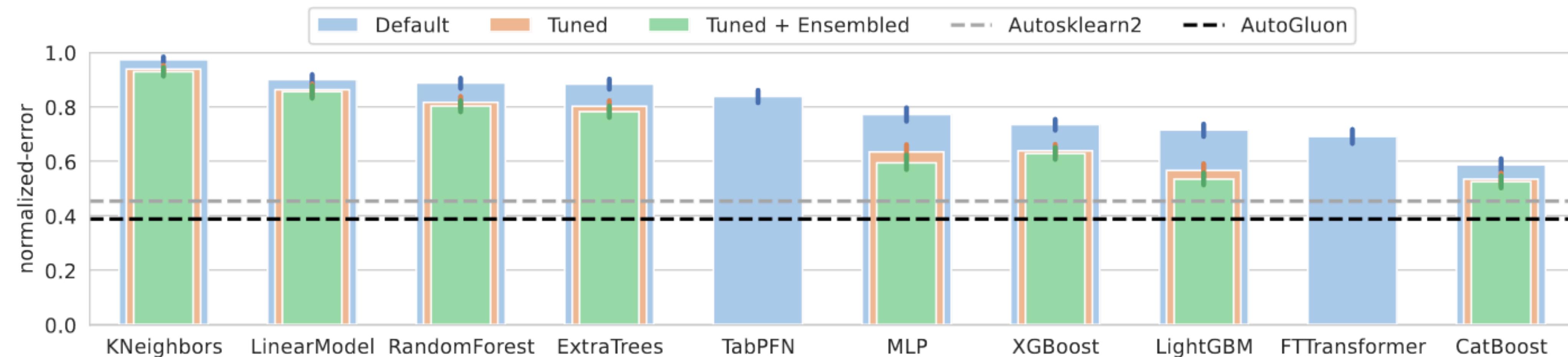


Figure 2: Normalized error for all model families when using default hyperparameters, tuned hyperparameters, and ensembling after tuning. All methods are run with a 4h budget.

Storing predictions and target labels allows to obtain the performance of **any ensemble** on the fly!

TabRepo

Studying the effect of HPO and ensembling

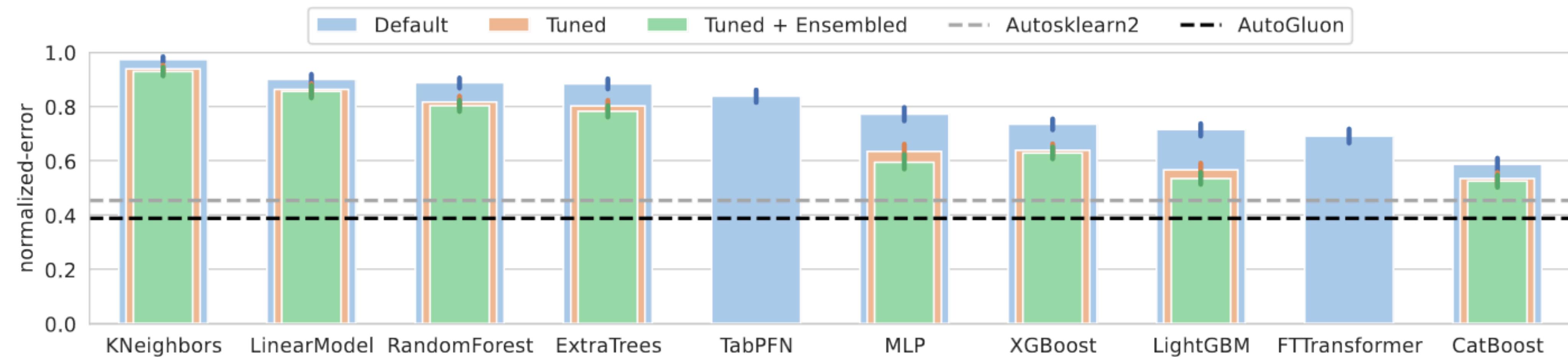


Figure 2: Normalized error for all model families when using default hyperparameters, tuned hyperparameters, and ensembling after tuning. All methods are run with a 4h budget.

Storing predictions and target labels allows to obtain the performance of **any ensemble** on the fly!

Doing this analysis just costs a few minutes on a laptop (as opposed to days on a cluster!)

TabRepo

Studying the effect of HPO and ensembling

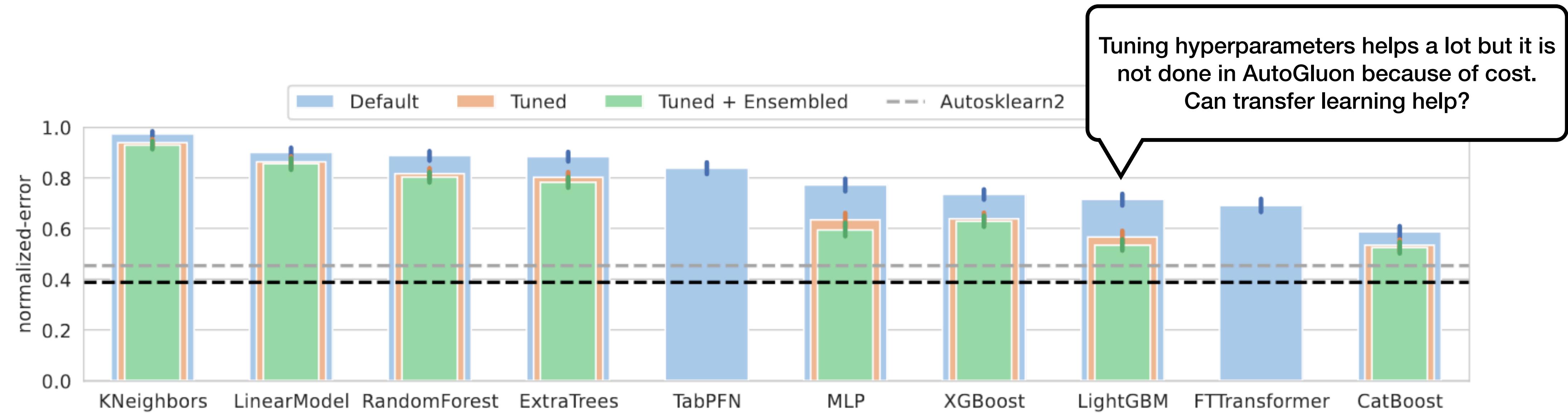


Figure 2: Normalized error for all model families when using default hyperparameters, tuned hyperparameters, and ensembling after tuning. All methods are run with a 4h budget.

Storing predictions and target labels allows to obtain the performance of **any ensemble** on the fly!

Doing this analysis just costs a few minutes on a laptop (as opposed to days on a cluster!)

Portfolio learning

Reaping the benefits of evaluations

Portfolio learning

Reaping the benefits of evaluations

- Assume we have access to error metrics of n datasets on m models, denoted as $\varepsilon \in \mathbb{R}^{n \times m}$

Portfolio learning

Reaping the benefits of evaluations

- Assume we have access to error metrics of n datasets on m models, denoted as $\varepsilon \in \mathbb{R}^{n \times m}$
- How can we select the best set of k default models for an average dataset?

Portfolio learning

Reaping the benefits of evaluations

- Assume we have access to error metrics of n datasets on m models, denoted as $\varepsilon \in \mathbb{R}^{n \times m}$
- How can we select the best set of k default models for an average dataset?
- Solve the optimization problem:

Portfolio learning

Reaping the benefits of evaluations

- Assume we have access to error metrics of n datasets on m models, denoted as $\varepsilon \in \mathbb{R}^{n \times m}$
- How can we select the best set of k default models for an average dataset?
- Solve the optimization problem:

$$(j_1, \dots, j_k) = \operatorname{argmin}_{(j_1, \dots, j_k) \in [m]^k} \frac{1}{n} \sum_{i=1}^n \min(\varepsilon_{ij_1}, \dots, \varepsilon_{ij_k})$$

Portfolio learning

Reaping the benefits of evaluations

- Assume we have access to error metrics of n datasets on m models, denoted as $\varepsilon \in \mathbb{R}^{n \times m}$
- How can we select the best set of k default models for an average dataset?
- Solve the optimization problem:

Select among all possible sets of k models

$$(j_1, \dots, j_k) = \operatorname{argmin}_{(j_1, \dots, j_k) \in [m]^k} \frac{1}{n} \sum_{i=1}^n \min(\varepsilon_{ij_1}, \dots, \varepsilon_{ij_k})$$

Portfolio learning

Reaping the benefits of evaluations

- Assume we have access to error metrics of n datasets on m models, denoted as $\varepsilon \in \mathbb{R}^{n \times m}$
- How can we select the best set of k default models for an average dataset?
- Solve the optimization problem

With best avg.
performance across datasets

Select among all possible sets of k models

$$(j_1, \dots, j_k) = \operatorname{argmin}_{(j_1, \dots, j_k) \in [m]^k} \frac{1}{n} \sum_{i=1}^n \min(\varepsilon_{ij_1}, \dots, \varepsilon_{ij_k})$$

Portfolio learning

Reaping the benefits of evaluations

- Assume we have access to error metrics of n datasets on m models, denoted as $\varepsilon \in \mathbb{R}^{n \times m}$
- How can we select the best set of k default models for an average dataset?
- Solve the optimization problem

With best avg.
performance across datasets

... when using the
best performing model
on a given dataset

Select among all possible sets of k models

$$(j_1, \dots, j_k) = \operatorname{argmin}_{(j_1, \dots, j_k) \in [m]^k} \frac{1}{n} \sum_{i=1}^n \min(\varepsilon_{ij_1}, \dots, \varepsilon_{ij_k})$$

Portfolio learning

Reaping the benefits of evaluations

- Assume we have access to error metrics of n datasets on m models, denoted as $\varepsilon \in \mathbb{R}^{n \times m}$
- How can we select the best set of k default models for an average dataset?
 - With best avg. performance across datasets
 - ... when using the best performing model on a given dataset
- Solve the optimization problem
Select among all possible sets of k models

$$(j_1, \dots, j_k) = \operatorname{argmin}_{(j_1, \dots, j_k) \in [m]^k} \frac{1}{n} \sum_{i=1}^n \min(\varepsilon_{ij_1}, \dots, \varepsilon_{ij_k})$$

- NP-hard [Feurer 2022], but admits an approximation

Portfolio learning

Reaping the benefits of evaluations

- Assume we have access to error metrics of n datasets on m models, denoted as $\varepsilon \in \mathbb{R}^{n \times m}$
- How can we select the best set of k default models for an average dataset?
 - With best avg. performance across datasets
 - ... when using the best performing model on a given dataset
- Solve the optimization problem
 - Select among all possible sets of k models
$$(j_1, \dots, j_k) = \operatorname{argmin}_{(j_1, \dots, j_k) \in [m]^k} \frac{1}{n} \sum_{i=1}^n \min(\varepsilon_{ij_1}, \dots, \varepsilon_{ij_k})$$
- NP-hard [Feurer 2022], but admits an approximation
- Greedy algorithm:

Portfolio learning

Reaping the benefits of evaluations

- Assume we have access to error metrics of n datasets on m models, denoted as $\varepsilon \in \mathbb{R}^{n \times m}$
- How can we select the best set of k default models for an average dataset?
 - With best avg. performance across datasets
 - ... when using the best performing model on a given dataset
- Solve the optimization problem
 - Select among all possible sets of k models
$$(j_1, \dots, j_k) = \operatorname{argmin}_{(j_1, \dots, j_k) \in [m]^k} \frac{1}{n} \sum_{i=1}^n \min(\varepsilon_{ij_1}, \dots, \varepsilon_{ij_k})$$
- NP-hard [Feurer 2022], but admits an approximation
- Greedy algorithm:

$$j_1 = \operatorname{argmin}_{j_1 \in [m]} \frac{1}{n} \sum_{i=1}^n \varepsilon_{ij_1}, \quad j_n = \operatorname{argmin}_{j_n \in [m]} \frac{1}{n} \sum_{i=1}^n \min(\varepsilon_{ij_1}, \dots, \varepsilon_{ij_n})$$

Portfolio learning

Reaping the benefits of evaluations

- Assume we have access to error metrics of n datasets on m models, denoted as $\varepsilon \in \mathbb{R}^{n \times m}$

- How can we select the best set of k default models for an average dataset?

With best avg.
performance across datasets

... when using the
best performing model
on a given dataset

Select among all possible sets of k models

$$(j_1, \dots, j_k) = \operatorname{argmin}_{(j_1, \dots, j_k) \in [m]^k} \frac{1}{n} \sum_{i=1}^n \min(\varepsilon_{ij_1}, \dots, \varepsilon_{ij_k})$$

- NP-hard [Feurer 2022], but admits an approximation

- Greedy algorithm:

$$j_1 = \operatorname{argmin}_{j_1 \in [m]} \frac{1}{n} \sum_{i=1}^n \varepsilon_{ij_1}, \quad j_n = \operatorname{argmin}_{j_n \in [m]} \frac{1}{n} \sum_{i=1}^n \min(\varepsilon_{ij_1}, \dots, \varepsilon_{ij_n})$$

Start by the model performing
best on average

Portfolio learning

Reaping the benefits of evaluations

- Assume we have access to error metrics of n datasets on m models, denoted as $\varepsilon \in \mathbb{R}^{n \times m}$
- How can we select the best set of k default models for an average dataset?
 - With best avg. performance across datasets
 - ... when using the best performing model on a given dataset
- Solve the optimization problem
Select among all possible sets of k models

$$(j_1, \dots, j_k) = \operatorname{argmin}_{(j_1, \dots, j_k) \in [m]^k} \frac{1}{n} \sum_{i=1}^n \min(\varepsilon_{ij_1}, \dots, \varepsilon_{ij_k})$$

- NP-hard [Feurer 2022], but admits an approximation
- Greedy algorithm:

$$j_1 = \operatorname{argmin}_{j_1 \in [m]} \frac{1}{n} \sum_{i=1}^n \varepsilon_{ij_1}, \quad j_n = \operatorname{argmin}_{j_n \in [m]} \frac{1}{n} \sum_{i=1}^n \min(\varepsilon_{ij_1}, \dots, \varepsilon_{ij_n})$$

Start by the model performing best on average

Greedy pick the model performing best on average when combined with the ones previously selected

Portfolio learning

Reaping the benefits of evaluations

- Assume we have access to error metrics of n datasets on m models, denoted as $\varepsilon \in \mathbb{R}^{n \times m}$
- How can we select the best set of k default models for an average dataset?
 - With best avg. performance across datasets
 - ... when using the best performing model on a given dataset
- Solve the optimization problem
 - Select among all possible sets of k models
$$(j_1, \dots, j_k) = \operatorname{argmin}_{(j_1, \dots, j_k) \in [m]^k} \frac{1}{n} \sum_{i=1}^n \min(\varepsilon_{ij_1}, \dots, \varepsilon_{ij_k})$$
- NP-hard [Feurer 2022], but admits an approximation
- Greedy algorithm:

$$j_1 = \operatorname{argmin}_{j_1 \in [m]} \frac{1}{n} \sum_{i=1}^n \varepsilon_{ij_1}, \quad j_n = \operatorname{argmin}_{j_n \in [m]} \frac{1}{n} \sum_{i=1}^n \min(\varepsilon_{ij_1}, \dots, \varepsilon_{ij_n})$$

Start by the model performing best on average

Greedy pick the model performing best on average when combined with the ones previously selected

Benefits :

- Approximation guarantees from the original (sub-modular) problem
- Tractable
- Works **extremely well** in practice

Portfolio learning

Reaping the benefits of evaluations

- Assume we have access to error metrics of n datasets on m models, denoted as $\varepsilon \in \mathbb{R}^{n \times m}$
- How can we select the best set of k default models for an average dataset?
 - With best avg. performance across datasets
 - ... when using the best performing model on a given dataset
- Solve the optimization problem
 - Select among all possible sets of k models
$$(j_1, \dots, j_k) = \operatorname{argmin}_{(j_1, \dots, j_k) \in [m]^k} \frac{1}{n} \sum_{i=1}^n \min(\varepsilon_{ij_1}, \dots, \varepsilon_{ij_k})$$
- NP-hard [Feurer 2022], but admits an approximation
- Greedy algorithm:

$$j_1 = \operatorname{argmin}_{j_1 \in [m]} \frac{1}{n} \sum_{i=1}^n \varepsilon_{ij_1}, \quad j_n = \operatorname{argmin}_{j_n \in [m]} \frac{1}{n} \sum_{i=1}^n \min(\varepsilon_{ij_1}, \dots, \varepsilon_{ij_n})$$

Start by the model performing best on average

Greedy pick the model performing best on average when combined with the ones previously selected

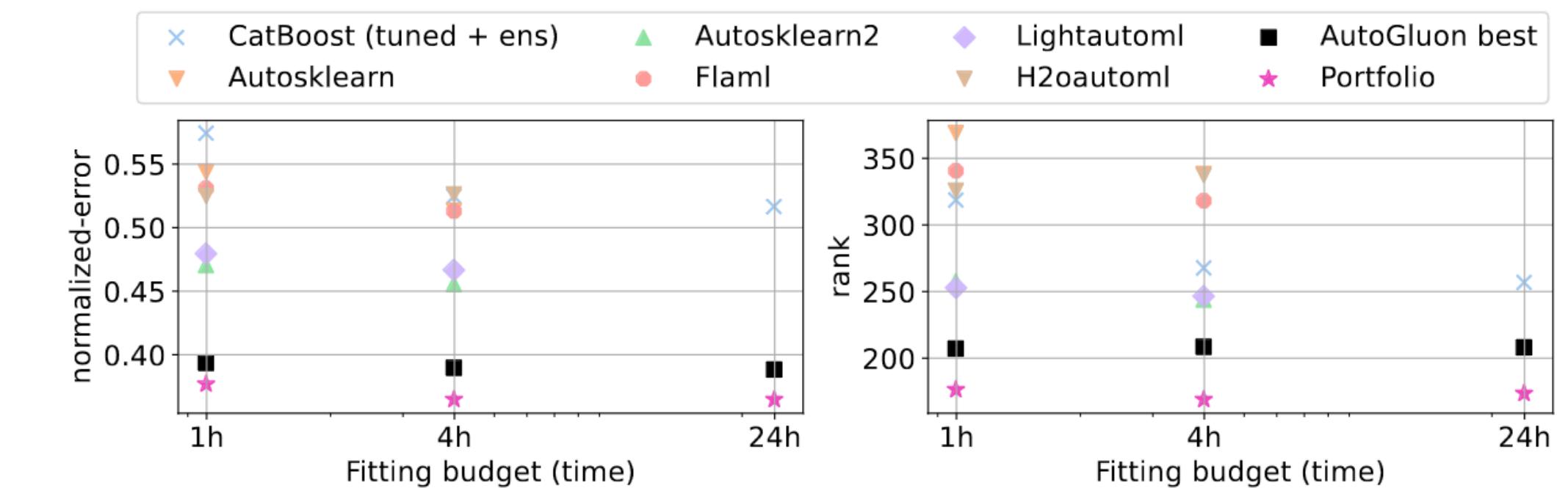
Benefits :

- Approximation guarantees from the original (sub-modular) problem
- Tractable
- Works **extremely well** in practice

Disadvantage : needs a grid or a surrogate

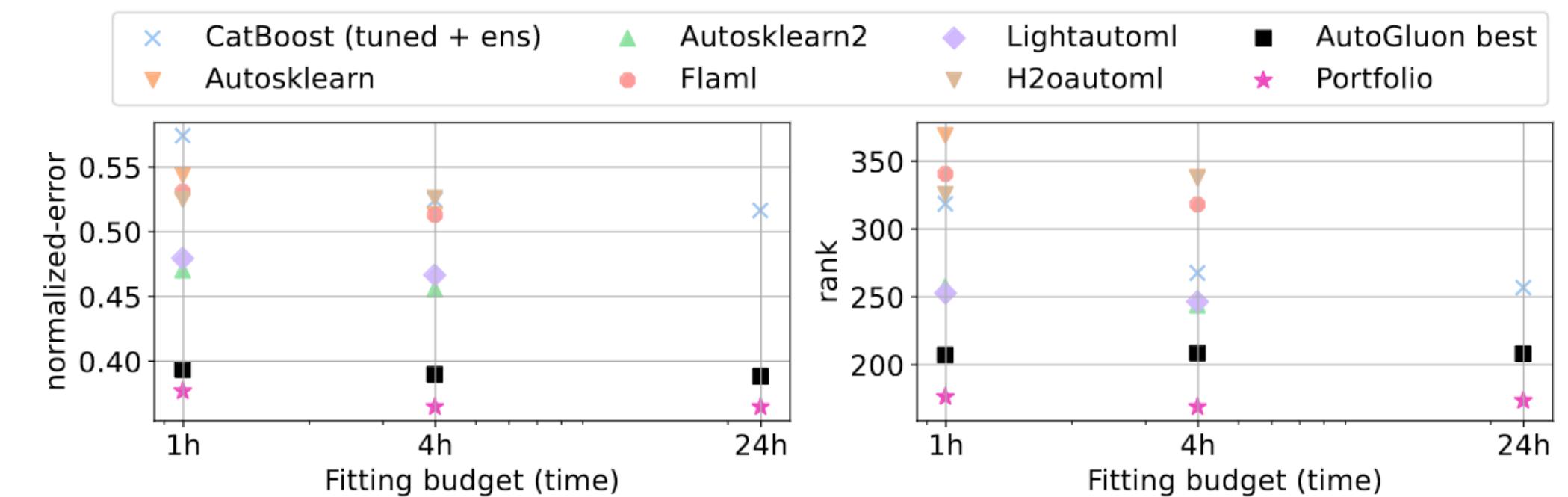
Results

Results



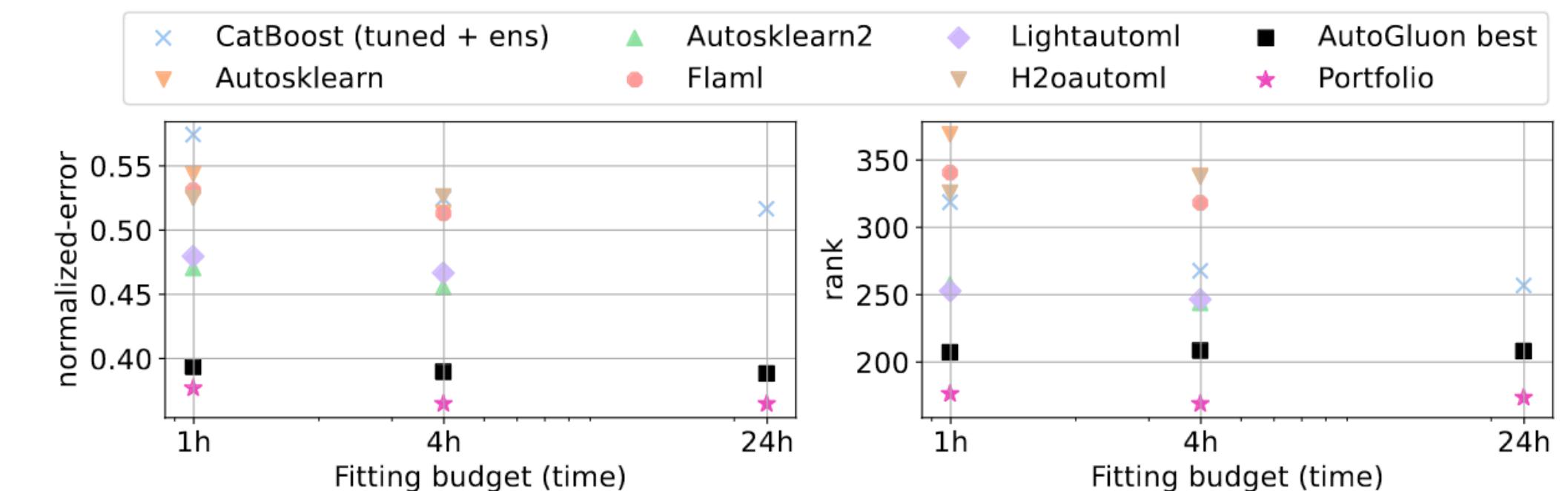
Results

- Just fitting portfolio configuration on evaluations of TabRepo outperforms all SOTA AutoML methods studied



Results

- Just fitting portfolio configuration on evaluations of TabRepo outperforms all SOTA AutoML methods studied
- We can analyse the performance of various components: #ensemble, #configurations, #datasets



Results

- Just fitting portfolio configuration on evaluations of TabRepo outperforms all SOTA AutoML methods studied
- We can analyse the performance of various components: #ensemble, #configurations, #datasets

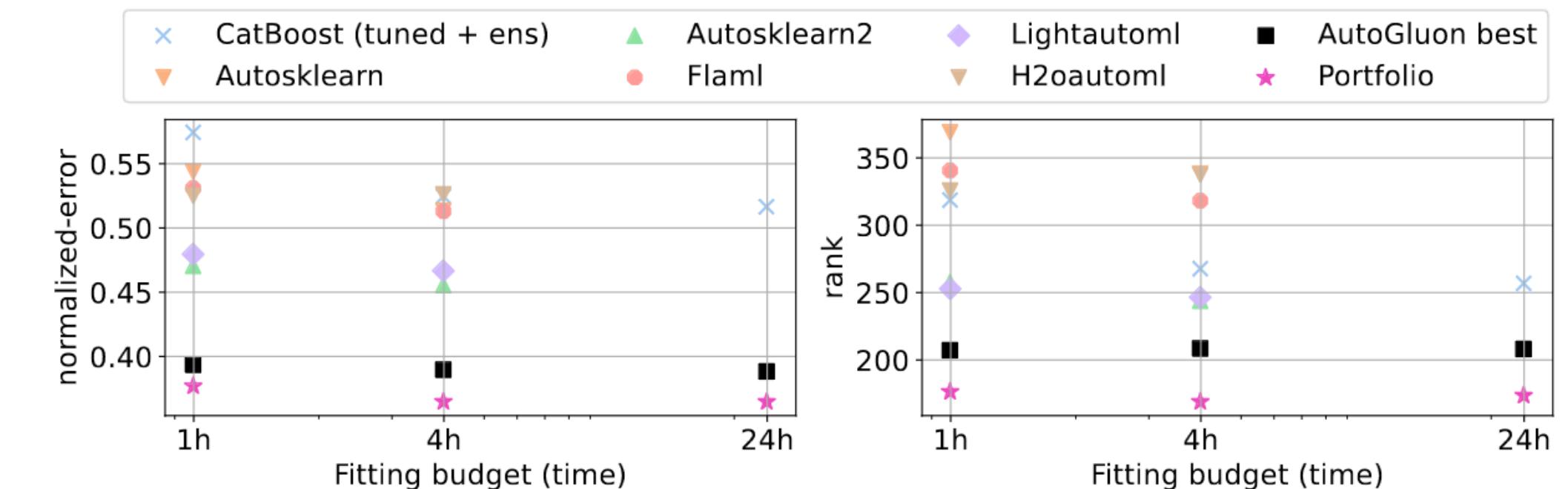
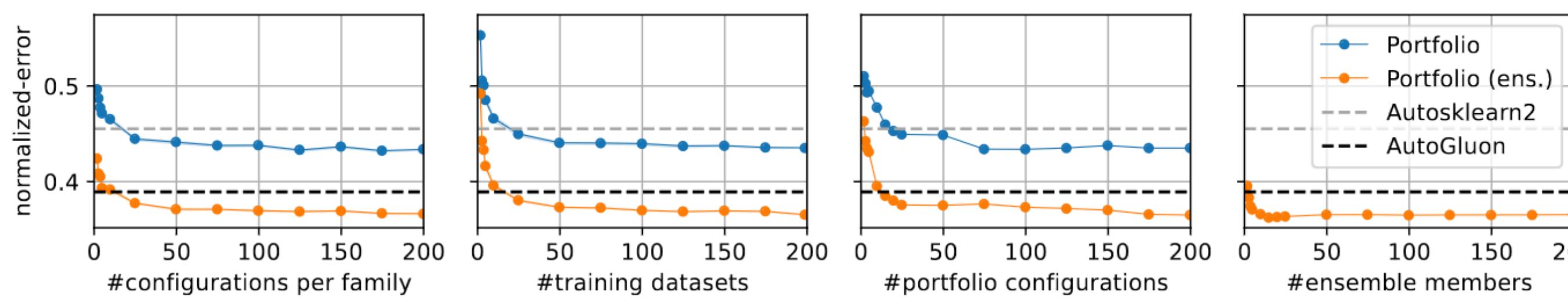


Figure 4: Impact on normalized error when varying the (a) number of configurations per family, (b) number of training datasets, (c) portfolio size and (d) number of ensemble members.

Results

- Just fitting portfolio configuration on evaluations of TabRepo outperforms all SOTA AutoML methods studied
- We can analyse the performance of various components: #ensemble, #configurations, #datasets
- Portfolio configurations has replaced the manually configured defaults and improved significantly AutoGluon

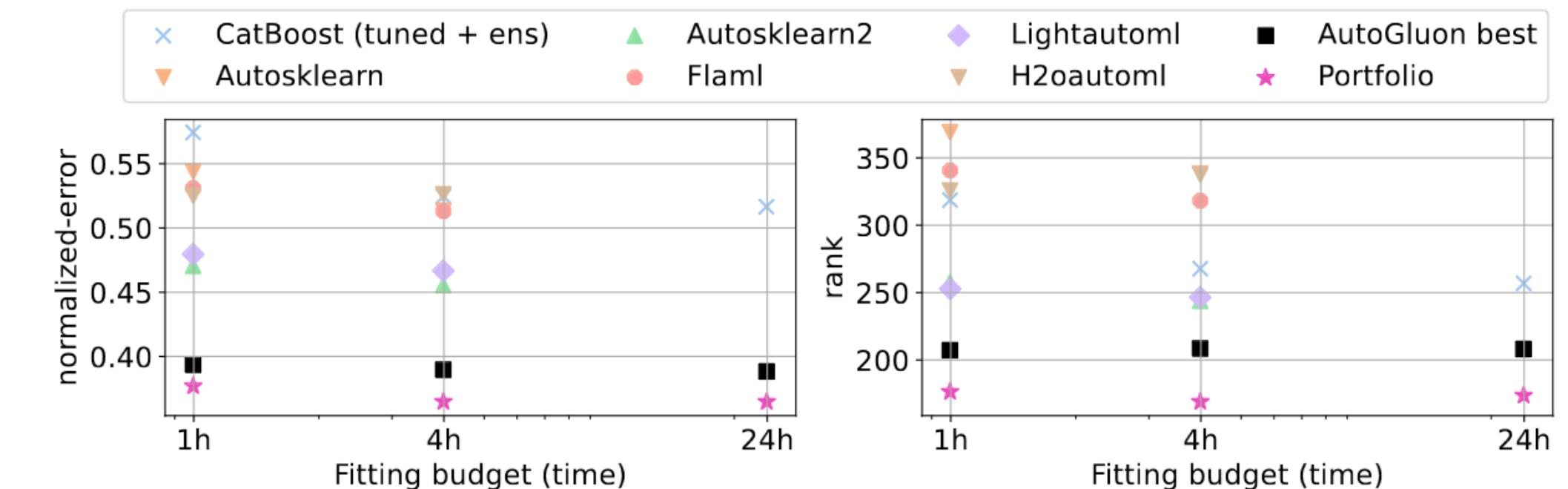
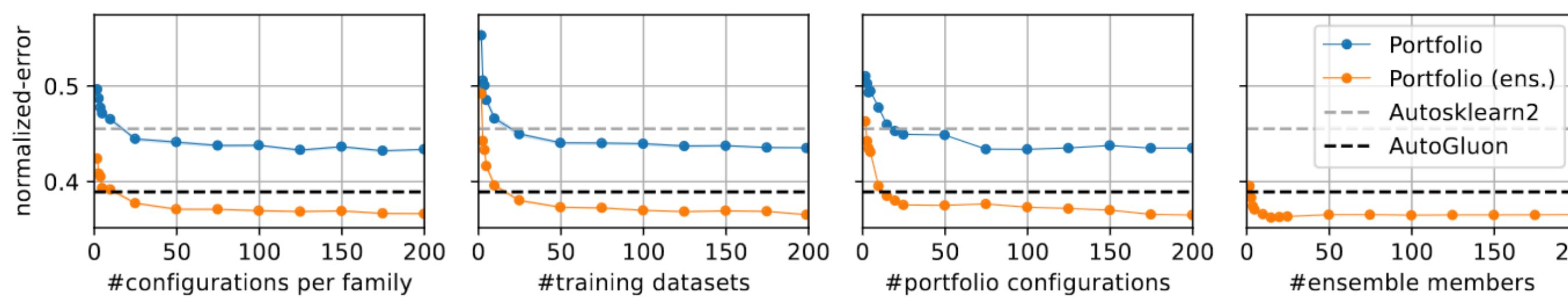


Figure 4: Impact on normalized error when varying the (a) number of configurations per family, (b) number of training datasets, (c) portfolio size and (d) number of ensemble members.

Results

- Just fitting portfolio configuration on evaluations of TabRepo outperforms all SOTA AutoML methods studied
- We can analyse the performance of various components: #ensemble, #configurations, #datasets
- Portfolio configurations has replaced the manually configured defaults and improved significantly AutoGluon

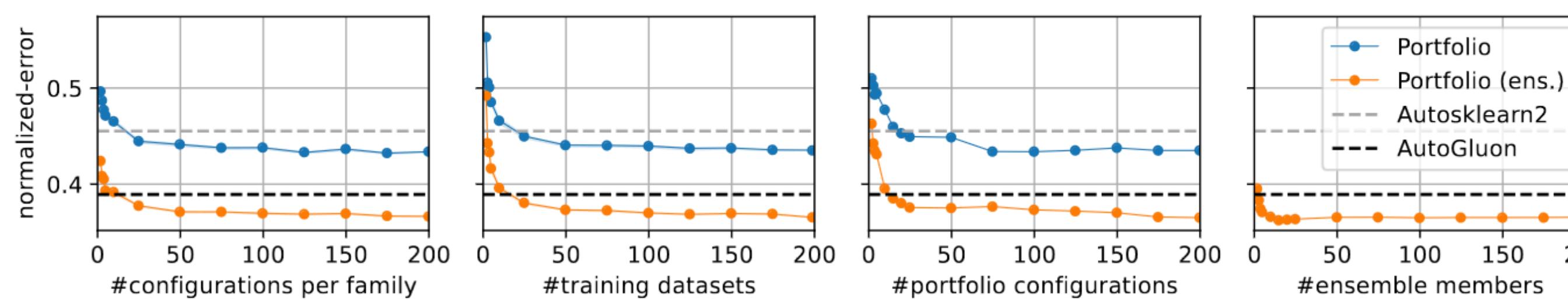


Figure 4: Impact on normalized error when varying the (a) number of configurations per family, (b) number of training datasets, (c) portfolio size and (d) number of ensemble members.

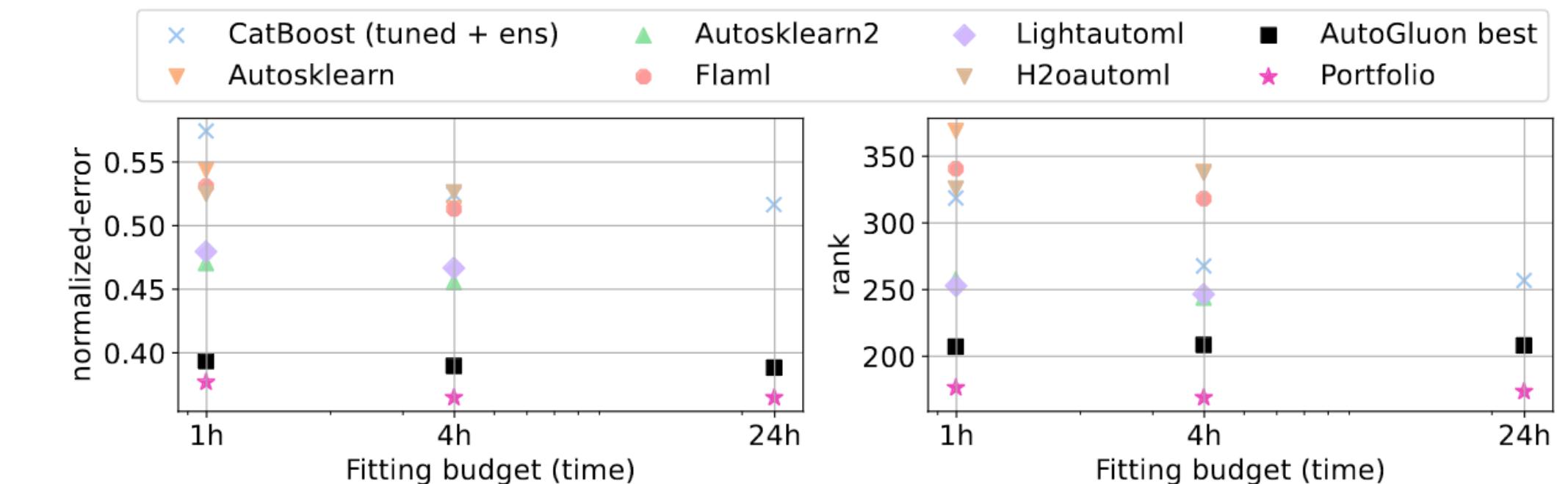


Table 2: Performance of AutoGluon combined with portfolios on AMLB.

method	win-rate	loss reduc.
AG + Portfolio (ours)	-	0%
AG	67%	2.8%
MLJAR	81%	22.5%
lightautoml	83%	11.7%
GAMA	86%	15.5%
FLAML	87%	16.3%
autosklearn	89%	11.8%
H2OAutoML	92%	10.3%
CatBoost	94%	18.1%
TunedRandomForest	94%	22.9%
RandomForest	97%	25.0%
XGBoost	98%	20.9%
LightGBM	98%	23.6%

Results

- Just fitting portfolio configuration on evaluations of TabRepo outperforms all SOTA AutoML methods studied
- We can analyse the performance of various components: #ensemble, #configurations, #datasets
- Portfolio configurations has replaced the manually configured defaults and improved significantly AutoGluon

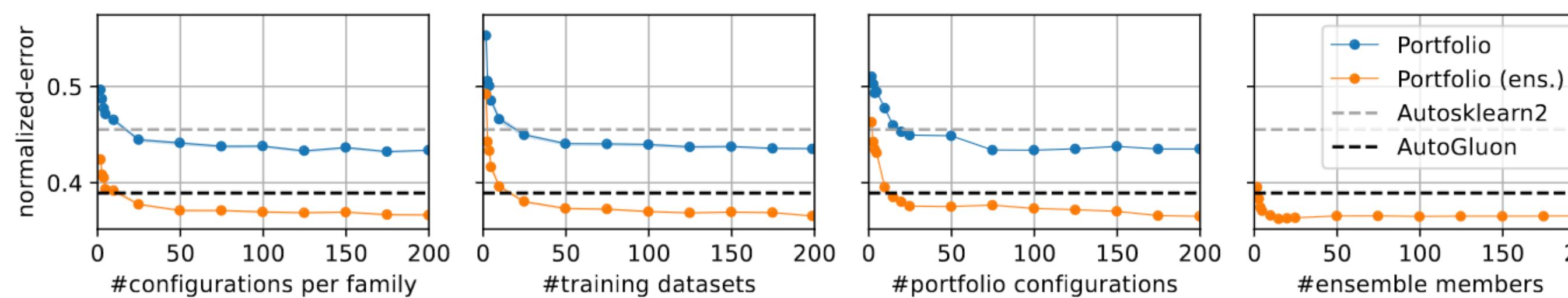


Figure 4: Impact on normalized error when varying the (a) number of configurations per family, (b) number of training datasets, (c) portfolio size and (d) number of ensemble members.

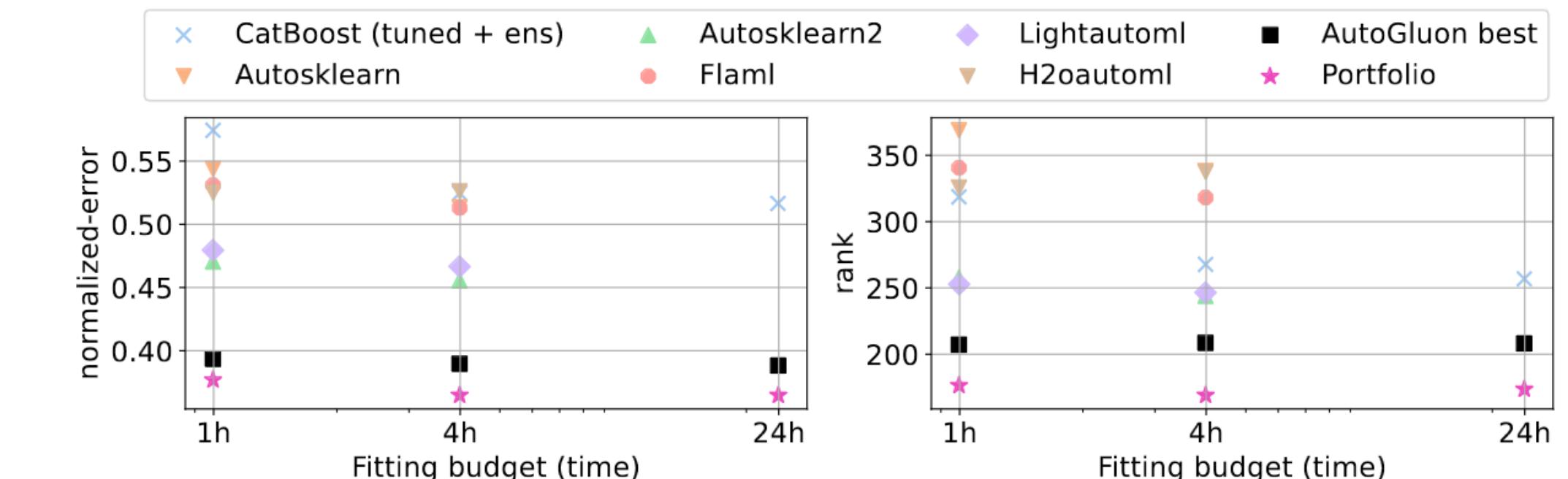


Table 2: Performance of AutoGluon combined with portfolios on AMLB.

method	win-rate	loss reduc.
AG + Portfolio (ours)	-	0%
AG	67%	2.8%
MLJAR	81%	22.5%
lightautoml	83%	11.7%
GAMA	86%	15.5%
FLAML	87%	16.3%
autosklearn	89%	11.8%
H2OAutoML	92%	10.3%
CatBoost	94%	18.1%
TunedRandomForest	94%	22.9%
RandomForest	97%	25.0%
XGBoost	98%	20.9%
LightGBM	98%	23.6%

Limitations

Limitations

- Easy to rerun paper analysis but hard to compare your own method

Limitations

- Easy to rerun paper analysis but hard to compare your own method
- Large collections of datasets (216) but mostly grabbed everything we could

Limitations

- Easy to rerun paper analysis but hard to compare your own method
- Large collections of datasets (216) but mostly grabbed everything we could
- No good control on quality, duplication, domain

Limitations

- Easy to rerun paper analysis but hard to compare your own method
- Large collections of datasets (216) but mostly grabbed everything we could
- No good control on quality, duplication, domain
- Only TabPFN-v1 as In Context Learning (ICL) method

TabArena: A Living Benchmark for Machine Learning on Tabular Data

Nick Erickson¹ Lennart Purucker² Andrej Tschalzev³ David Holzmüller^{4,5,6}

Prateek Mutalik Desai¹ David Salinas^{8,2} Frank Hutter^{7,8,2}

¹Amazon Web Services ²University of Freiburg ³University of Mannheim ⁴INRIA Paris

⁵Ecole Normale Supérieure ⁶PSL Research University ⁷Prior Labs ⁸ELLIS Institute Tübingen
mail@tabarena.ai

NeurIPS 2025 Spotlight

TabArena

TabArena

Nick
Erickson

Lennart
Purucker

Andrej
Tschalzev

David
Holzmüller

Prateek
Matalik Desai

David
Salinas

Frank
Hutter

PRIOR
LABS

TabArena

Nick
Erickson

Lennart
Purucker

And
Tschabitscher

Prateek
Mutalik Desai

David
Salinas

Competing interests

D.H. is one of the authors of RealMLP and one of the authors of TabICL.

D.S. and N.E. are the authors of TabRepo.

N.E., L.P., and P.M.D. are developers of AutoGluon, and in extension, the current maintainers of FastAI MLP and Torch MLP.

L.P. and F.H. are a subset of the authors of TabPFNv2.

L.P. is an OpenML core contributor.

F.H. is affiliated with PriorLabs, a company focused on developing tabular foundation models.

The authors declare no other competing interests.

PRIOR
LABS

Motivation 1: Unreliable Baselines

How to become SOTA on the highly used benchmark by McElfresh et al. (2023):

Model	Avg. Rank	Avg. norm. logloss	Avg. logloss
XGBoost	5.56	0.1	0.39
CatBoost	5.84	0.12	0.45
LightGBM	6.85	0.17	0.45
ResNet	8.12	0.22	0.49
SAINT	8.77	0.23	0.52
...			
MLP	10.79	0.39	0.96
...			
KNN	15.68	0.71	0.88

Motivation 1: Unreliable Baselines

How to become SOTA on the highly used benchmark by McElfresh et al. (2023):

Model	Avg. Rank	Avg. norm. logloss	Avg. logloss
XGBoost (ours, holdout)	4.13	0.06	0.36
XGBoost	5.56	0.1	0.39
CatBoost	5.84	0.12	0.45
MLP (ours, holdout)	6.09	0.15	0.4
LightGBM	6.85	0.17	0.45
ResNet	8.12	0.22	0.49
SAINT	8.77	0.23	0.52
...			
MLP	10.79	0.39	0.96
...			
KNN	15.68	0.71	0.88

Motivation 1: Unreliable Baselines

How to become SOTA on the highly used benchmark by McElfresh et al. (2023):

Model	Avg. Rank	Avg. norm. logloss	Avg. logloss
XGBoost (ours, holdout)	4.13	0.06	0.36
XGBoost	5.56	0.1	0.39
CatBoost	5.84	0.12	0.45
MLP (ours, holdout)	6.09	0.15	0.4
LightGBM	6.85	0.17	0.45
ResNet	8.12	0.22	0.49
SAINT	8.77	0.23	0.52
...			
MLP	10.79	0.39	0.96
...			
KNN	15.68	0.71	0.88

Accepted ICML and
NeurIPS papers (that
claim SOTA)

Motivation 1: Unreliable Baselines

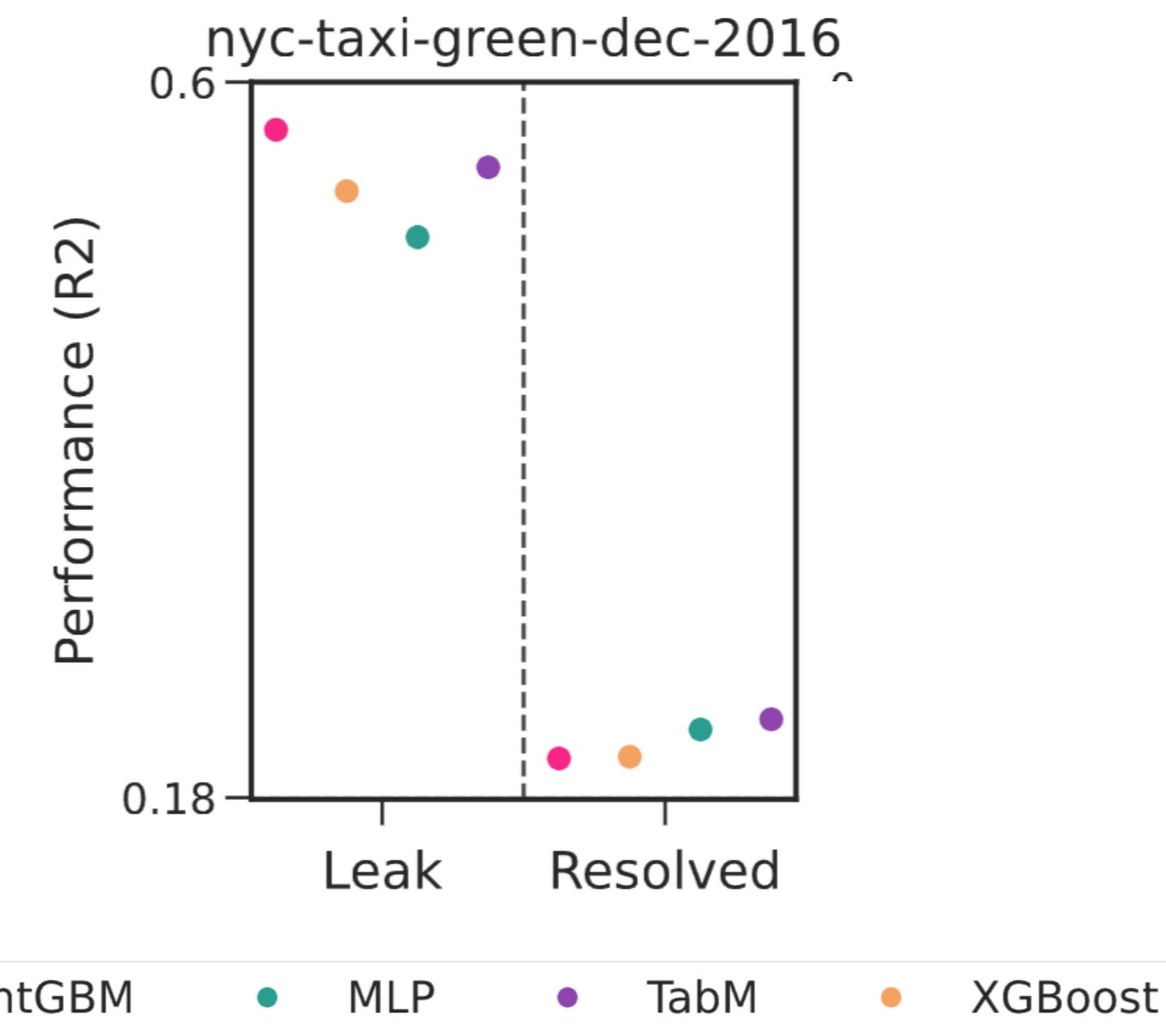
How to become SOTA on the highly used benchmark by McElfresh et al. (2023):

Model	Avg. Rank	Avg. norm. logloss	Avg. logloss
XGBoost (ours, 5CV)	1.77	0.03	0.34
MLP (ours, 5CV)	2.1	0.08	0.34
XGBoost (ours, holdout)	4.13	0.06	0.36
XGBoost	5.56	0.1	0.39
CatBoost	5.84	0.12	0.45
MLP (ours, holdout)	6.09	0.15	0.4
LightGBM	6.85	0.17	0.45
ResNet	8.12	0.22	0.49
SAINT	8.77	0.23	0.52
...			
MLP	10.79	0.39	0.96
...			
KNN	15.68	0.71	0.88

Accepted ICML and
NeurIPS papers (that
claim SOTA)

Motivation 2: Insufficient Dataset Curation

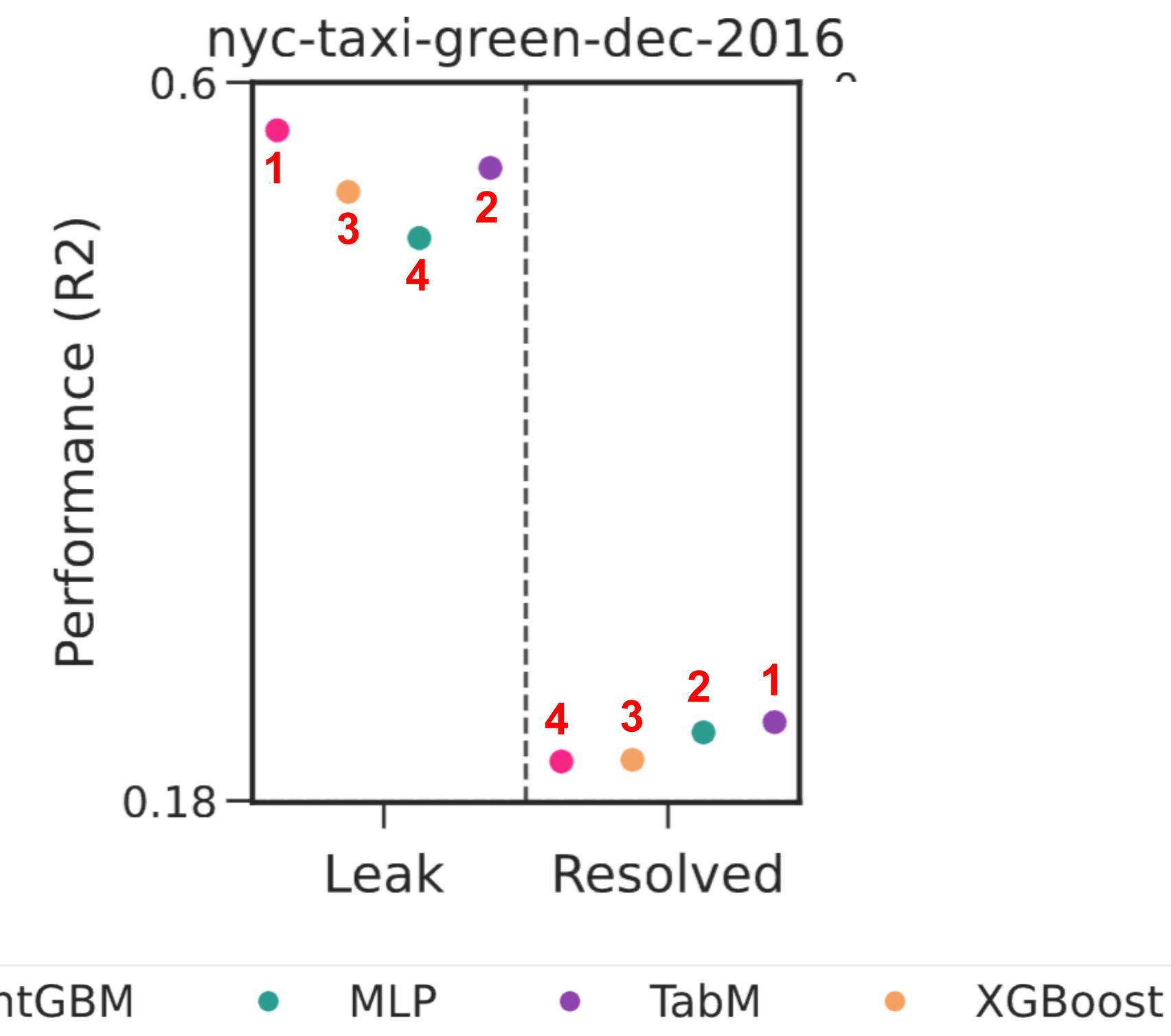
Faulty data influences the results:



Tschalzev, Andrej, et al. "Unreflected use of tabular data repositories can undermine research quality." (2025).

Motivation 2: Insufficient Dataset Curation

Faulty data influences the results:



Motivation 3: Inappropriate Evaluation Protocols

Splits must be appropriate for the data:

Benchmark	Time-split		
	Needed	Possible	Used
Grinsztajn et al. (2022)	22	5	
Tabzilla (McElfresh et al., 2023)	12	0	
WildTab (Kolesnikov, 2023)	1	1	✗
TableShift (Gardner et al., 2023)	15	8	
Gorishniy et al. (2024)	7	1	

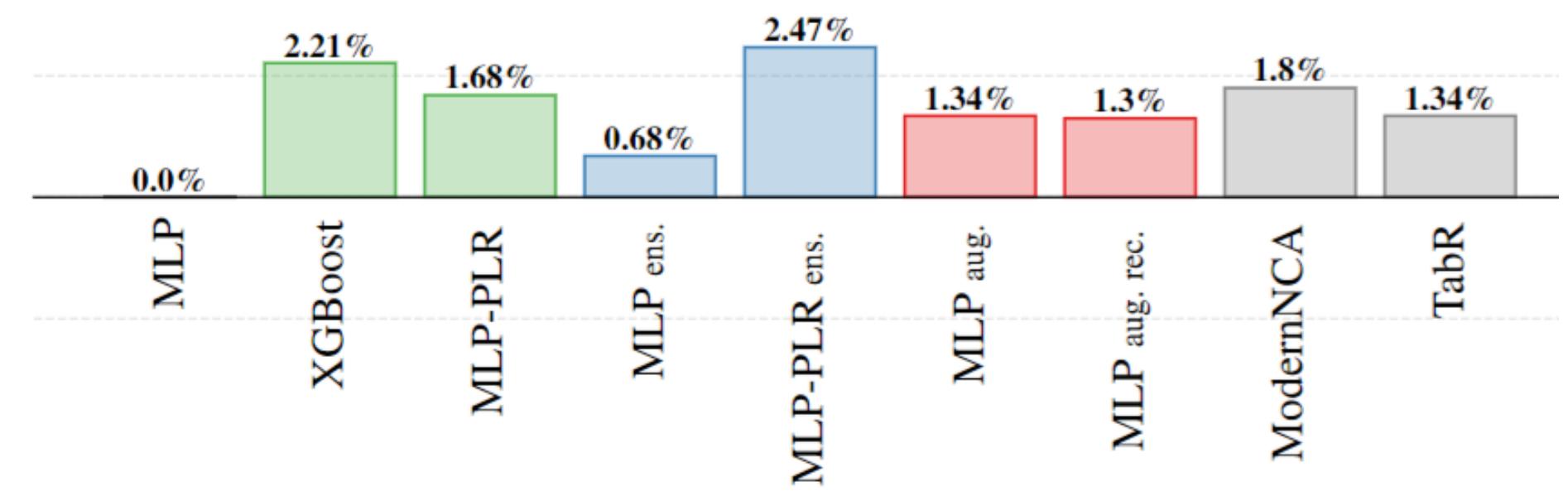
Motivation 3: Inappropriate Evaluation Protocols

Splits must be appropriate for the data:

Benchmark	Time-split		
	Needed	Possible	Used
Grinsztajn et al. (2022)	22	5	
Tabzilla (McElfresh et al., 2023)	12	0	
WildTab (Kolesnikov, 2023)	1	1	✗
TableShift (Gardner et al., 2023)	15	8	
Gorishniy et al. (2024)	7	1	

Percentage Change Over MLP

Benchmark from [Gorishniy et al. \(2024\)](#)



Rubachev, Ivan, et al. "TabReD: Analyzing Pitfalls and Filling the Gaps in Tabular Deep Learning Benchmarks." (2024)

█ Models █ Ensembles █ Training Methods █ Retrieval-Based Models

Motivation 3: Inappropriate Evaluation Protocols

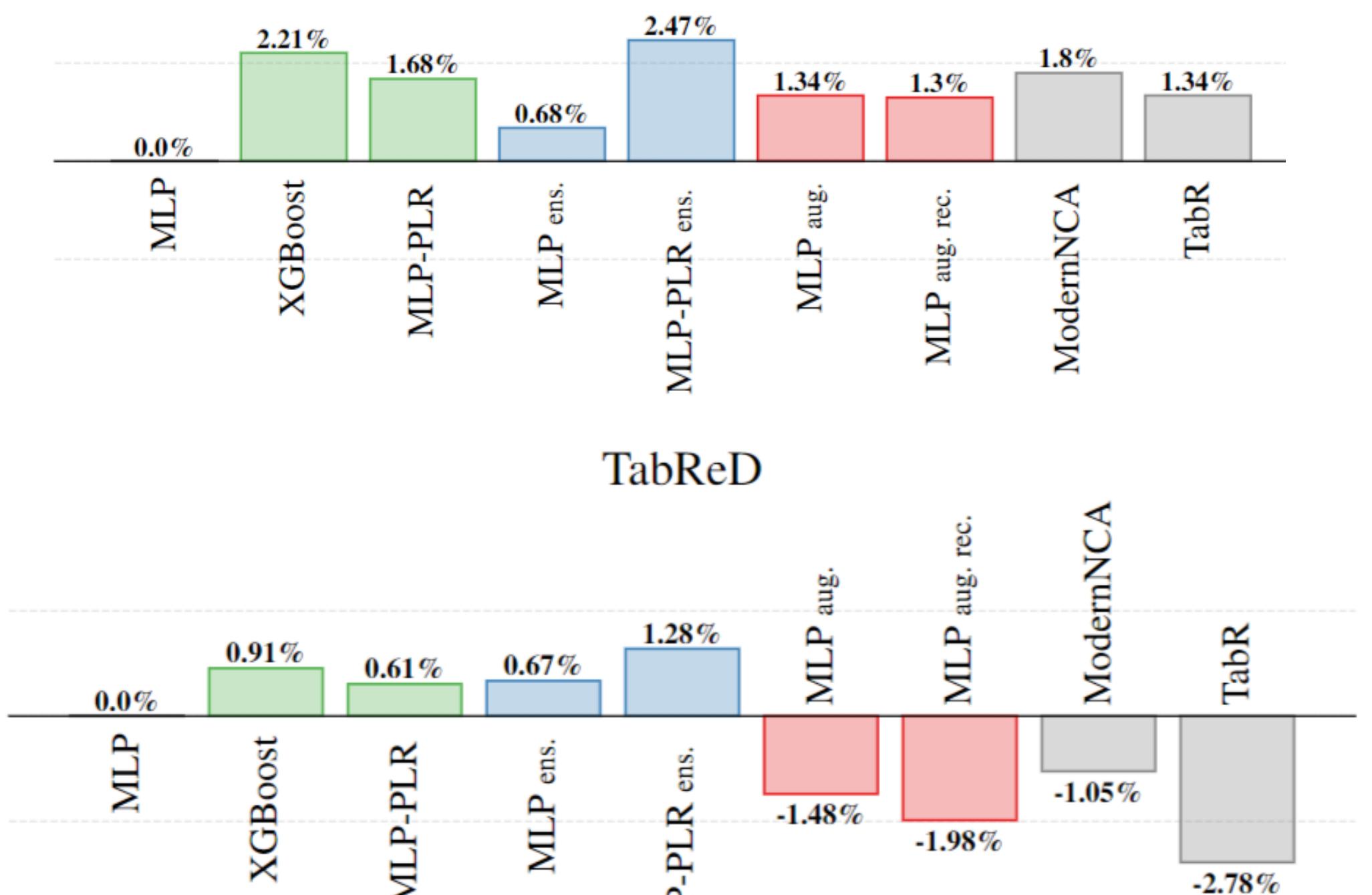
Splits must be appropriate for the data:

Benchmark	Time-split		
	Needed	Possible	Used
Grinsztajn et al. (2022)	22	5	
Tabzilla (McElfresh et al., 2023)	12	0	
WildTab (Kolesnikov, 2023)	1	1	✗
TableShift (Gardner et al., 2023)	15	8	
Gorishniy et al. (2024)	7	1	

Rubachev, Ivan, et al. "TabReD: Analyzing Pitfalls and Filling the Gaps in Tabular Deep Learning Benchmarks." (2024)

Percentage Change Over MLP

Benchmark from [Gorishniy et al. \(2024\)](#)



Legend: Models (green), Ensembles (blue), Training Methods (red), Retrieval-Based Models (gray)

Motivation Summary

(Partial) Overview of Tabular Benchmarks

Bischl et al. [28, 29]

Gorishniy et al. [30]

Shwartz-Ziv and Armon [31]

Grinsztajn et al. [32]

McElfresh et al. [33]

Fischer et al. [34]

Gijsbers et al. [35]

Kohli et al. [7]

Tschalzev et al. [8]

Holzmüller et al. [20]

Ye et al. [36]

Rubachev et al. [10]

Salinas and Erickson [37]

Motivation Summary

(Partial) Overview of Tabular Benchmarks

- Bischl et al. [28, 29]
- Gorishniy et al. [30]
- Shwartz-Ziv and Armon [31]
- Grinsztajn et al. [32]
- McElfresh et al. [33]
- Fischer et al. [34]
- Gijsbers et al. [35]
- Kohli et al. [7]
- Tschalzev et al. [8]
- Holzmüller et al. [20]
- Ye et al. [36]
- Rubachev et al. [10]
- Salinas and Erickson [37]

One more benchmark should fix it!

Motivation Summary

(Partial) Overview of Tabular Benchmarks

Bischl et al. [28, 29]

Gorishniy et al. [30]

Shwartz-Ziv and Armon [31]

Grinsztajn et al. [32]

McElfresh et al. [33]

Fischer et al. [34]

Gijsbers et al. [35]

Kohli et al. [7]

Tschalzev et al. [8]

Holzmüller et al. [20]

Ye et al. [36]

Rubachev et al. [10]

Salinas and Erickson [37]

No!

One more benchmark should fix it!

Motivation Summary

(Partial) Overview of Tabular Benchmarks

Bischl et al. [28, 29]

Gorishniy et al. [30]

Shwartz-Ziv and Armon [31]

Grinsztajn et al. [32]

McElfresh et al. [33]

Fischer et al. [34]

Gijsbers et al. [35]

Kohli et al. [7]

Tschalzev et al. [8]

Holzmüller et al. [20]

Ye et al. [36]

Rubachev et al. [10]

Salinas and Erickson [37]

No!

One more benchmark
should fix it!

**Benchmarks require
continuous updates!**

TabArena-v0.1

Models

Models

1. SOTA tree-based, neural networks, and foundation models.
2. Implemented with authors
3. Good, optimized search spaces

Models, Hyperparameters, and Tuning

Model	Short Name	Search Space	Type
Random Forests [12]	RandomForest	Prior Work + Us	
Extremely Randomized Trees [13]	ExtraTrees	Prior Work + Us	
XGBoost [14]	XGBoost	Prior Work + Us	
LightGBM [15]	LightGBM	Prior Work + Us	
CatBoost [16]	CatBoost	Prior Work + Us	
Explainable Boosting Machine [17, 18]	EBM	Authors	
FastAI MLP [19]	FastaiMLP	Authors	
Torch MLP [19]	TorchMLP	Authors	
RealMLP [20]	RealMLP	Authors	
TabM [†] _{mini} [9]	TabM	Authors	
ModernNCA [21]	ModernNCA	Authors	
TabPFNv2 [5]	TabPFNv2	Authors	
TabICL [22]	TabICL	-	
TabDPT [23]	TabDPT	-	
Linear / Logistic Regression	Linear	TabRepo	
K-Nearest Neighbors	KNN	TabRepo	

tree-based ()¹, neural network ()², pretrained foundation models ()³, and baseline ()⁴

Models, Hyperparameters, and Tuning

Models

Benchmark	#splits inner
Bischl et al. [28, 29]	1
Gorishniy et al. [30]	1
Shwartz-Ziv and Armon [31]	1
Grinsztajn et al. [32]	1
McElfresh et al. [33]	1
Fischer et al. [34]	{1, 3, 10}
Gijsbers et al. [35]	-
Kohli et al. [7]	1
Tschalzev et al. [8]	10
Holzmüller et al. [20]	1
Ye et al. [36]	1
Rubachev et al. [10]	1
Salinas and Erickson [37]	8
TabArena (Ours)	8

Peak Performance by:

- Proper (inner) **cross-validation** **to avoid overfitting**

Models, Hyperparameters, and Tuning

Models

Benchmark	#splits	inner	Ensembling
Bischl et al. [28, 29]	1		✗
Gorishniy et al. [30]	1		(✓)
Shwartz-Ziv and Armon [31]	1		(✓)
Grinsztajn et al. [32]	1		✗
McElfresh et al. [33]	1		✗
Fischer et al. [34]	{1, 3, 10}		✗
Gijsbers et al. [35]	-		(✓)
Kohli et al. [7]	1		✗
Tschalzev et al. [8]	10		(✓)
Holzmüller et al. [20]	1		(✓)
Ye et al. [36]	1		✗
Rubachev et al. [10]	1		(✓)
Salinas and Erickson [37]	8		✓
TabArena (Ours)	8		✓

Peak Performance by:

- Proper (inner) **cross-validation to avoid overfitting**
- Model-wise **post-hoc ensembling** (Caruana et al.)

Models, Hyperparameters, and Tuning

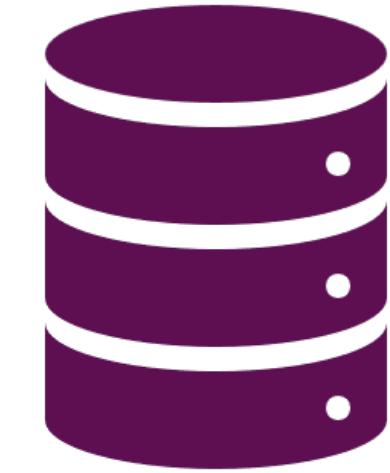
Models

Benchmark	#splits inner	Ensembling	HPO Limit	#confs.	#hours
Bischl et al. [28, 29]	1	✗	1	-	
Gorishniy et al. [30]	1	✓	100	6	
Shwartz-Ziv and Armon [31]	1	✓	1000	-	
Grinsztajn et al. [32]	1	✗	400	-	
McElfresh et al. [33]	1	✗	30	10	
Fischer et al. [34]	{1, 3, 10}	✗	{-, 500}	-	
Gijsbers et al. [35]	-	✓	-	4	
Kohli et al. [7]	1	✗	100	{3, -}	
Tschalzev et al. [8]	10	✓	100	-	
Holzmüller et al. [20]	1	✓	50	-	
Ye et al. [36]	1	✗	100	-	
Rubachev et al. [10]	1	✓	100	-	
Salinas and Erickson [37]	8	✓	200	200	
TabArena (Ours)	8	✓	200	200	

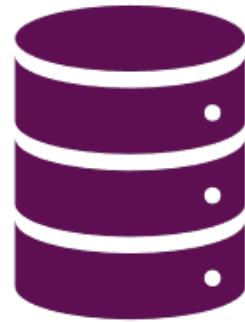
Peak Performance by:

- Proper (inner) **cross-validation to avoid overfitting**
- Model-wise **post-hoc ensembling** (Caruana et al.)
- **Extensive HPO** (200 configs, 1 hour per config)

TabArena-v0.1



Datasets



Datasets Curation

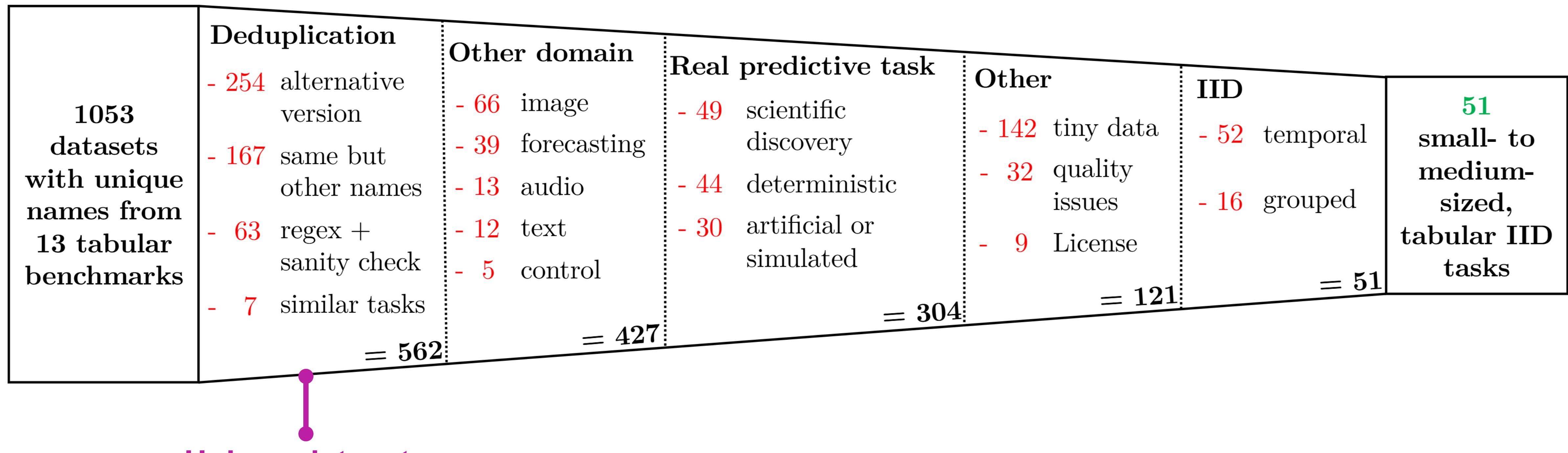
Datasets

<p>1053 datasets with unique names from 13 tabular benchmarks</p>	<p>Deduplication</p> <ul style="list-style-type: none">- 254 alternative version- 167 same but other names- 63 regex + sanity check- 7 similar tasks <p>= 562</p>	<p>Other domain</p> <ul style="list-style-type: none">- 66 image- 39 forecasting- 13 audio- 12 text- 5 control <p>= 427</p>	<p>Real predictive task</p> <ul style="list-style-type: none">- 49 scientific discovery- 44 deterministic- 30 artificial or simulated <p>= 304</p>	<p>Other</p> <ul style="list-style-type: none">- 142 tiny data- 32 quality issues- 9 License <p>= 121</p>	<p>IID</p> <ul style="list-style-type: none">- 52 temporal- 16 grouped <p>= 51</p>	<p>51 small- to medium- sized, tabular IID tasks</p>
--	---	--	---	--	--	---

Results of our *manual* curation: 51 out of 1053

Datasets Curation

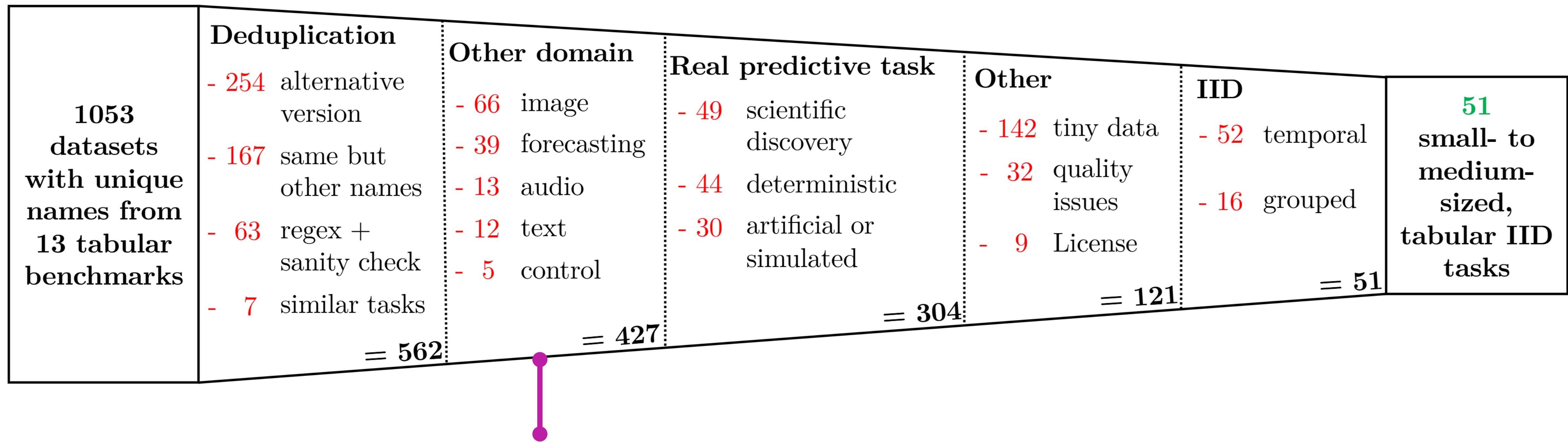
Datasets



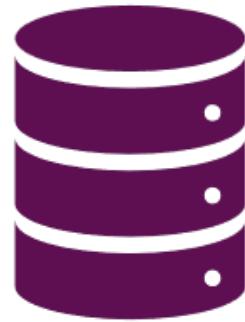
- Many surprising duplicates (e.g., AutoML competition datasets)
- Very similar tasks (e.g., 5 datasets from one paper, same features different targets)

Datasets Curation

Datasets

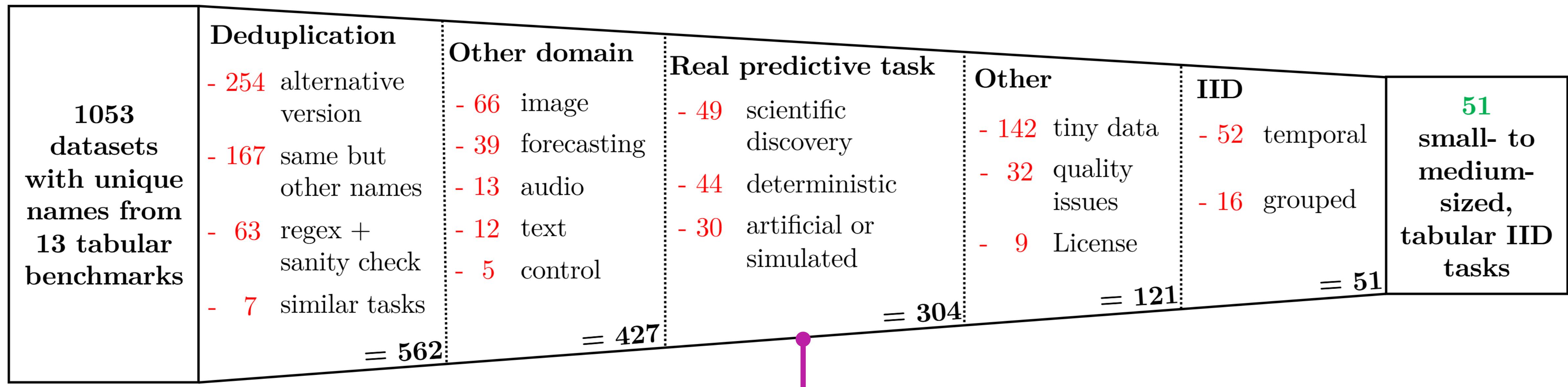


- Many datasets that treat images as tables (often very outdated)
- Often, only the original source described the data



Datasets Curation

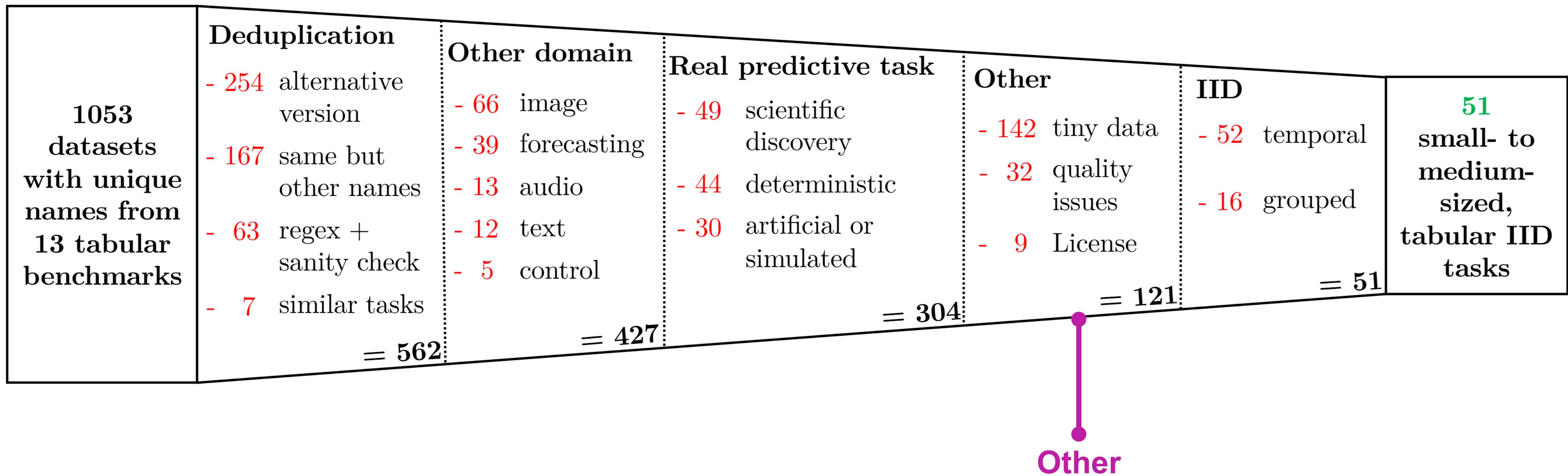
Datasets



- Scientific discovery (why/how questions) vs. predictive task
- Real-world data: not deterministic, not artificial, not simulated

Datasets Curation

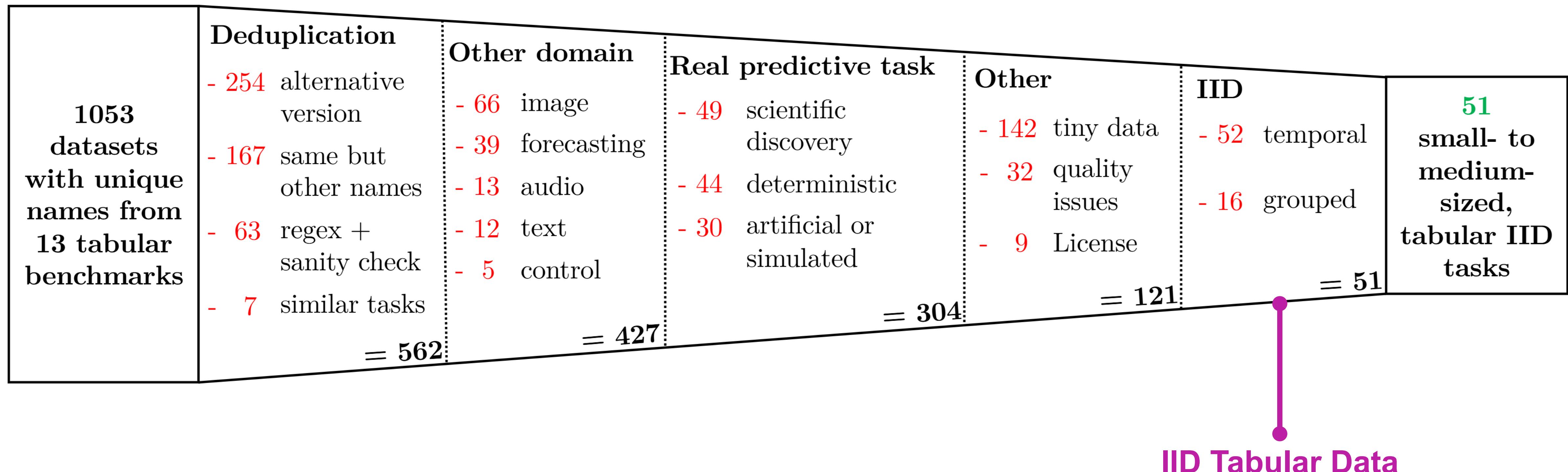
Datasets



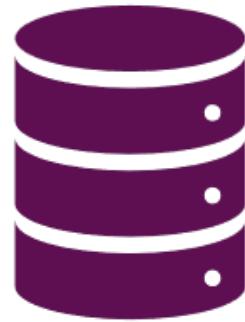
- Many tiny (often old) datasets
- Datasets with preprocessing errors (PCA data leakage), missing source information, and target leakage

Datasets Curation

Datasets



- Tasks that require non-random splits
- Temporal-dependent features / grouped data (e.g., algorithm selection)
- Many borderline cases



Datasets Curation

Datasets

<p>1053 datasets with unique names from 13 tabular benchmarks</p>	<p>Deduplication</p> <ul style="list-style-type: none">- 254 alternative version- 167 same but other names- 63 regex + sanity check- 7 similar tasks <p>= 562</p>	<p>Other domain</p> <ul style="list-style-type: none">- 66 image- 39 forecasting- 13 audio- 12 text- 5 control <p>= 427</p>	<p>Real predictive task</p> <ul style="list-style-type: none">- 49 scientific discovery- 44 deterministic- 30 artificial or simulated <p>= 304</p>	<p>Other</p> <ul style="list-style-type: none">- 142 tiny data- 32 quality issues- 9 License <p>= 121</p>	<p>IID</p> <ul style="list-style-type: none">- 52 temporal- 16 grouped <p>= 51</p>	<p>51 small- to medium- sized, tabular IID tasks</p>
--	---	--	---	--	--	---

Check for yourself and verify our curation:
<https://tabarena.ai/dataset-curation>

Datasets Curation

Datasets

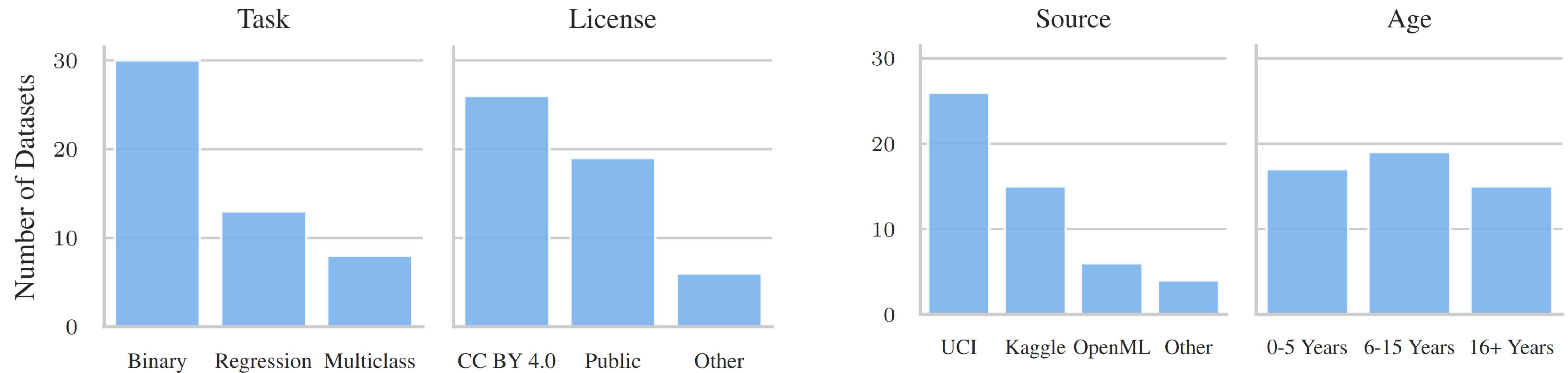
<p>1053 datasets with unique names from 13 tabular benchmarks</p>	<p>Deduplication</p> <ul style="list-style-type: none">- 254 alternative version- 167 same but other names- 63 regex + sanity check- 7 similar tasks <p>= 562</p>	<p>Other domain</p> <ul style="list-style-type: none">- 66 image- 39 forecasting- 13 audio- 12 text- 5 control <p>= 427</p>	<p>Real predictive task</p> <ul style="list-style-type: none">- 49 scientific discovery- 44 deterministic- 30 artificial or simulated <p>= 304</p>	<p>Other</p> <ul style="list-style-type: none">- 142 tiny data- 32 quality issues- 9 License <p>= 121</p>	<p>IID</p> <ul style="list-style-type: none">- 52 temporal- 16 grouped <p>= 51</p>	<p>51 small- to medium- sized, tabular IID tasks</p>
--	---	--	---	--	--	---

Check for yourself and verify our curation:
<https://tabarena.ai/dataset-curation>

Smaller is better!
Sometimes at least...

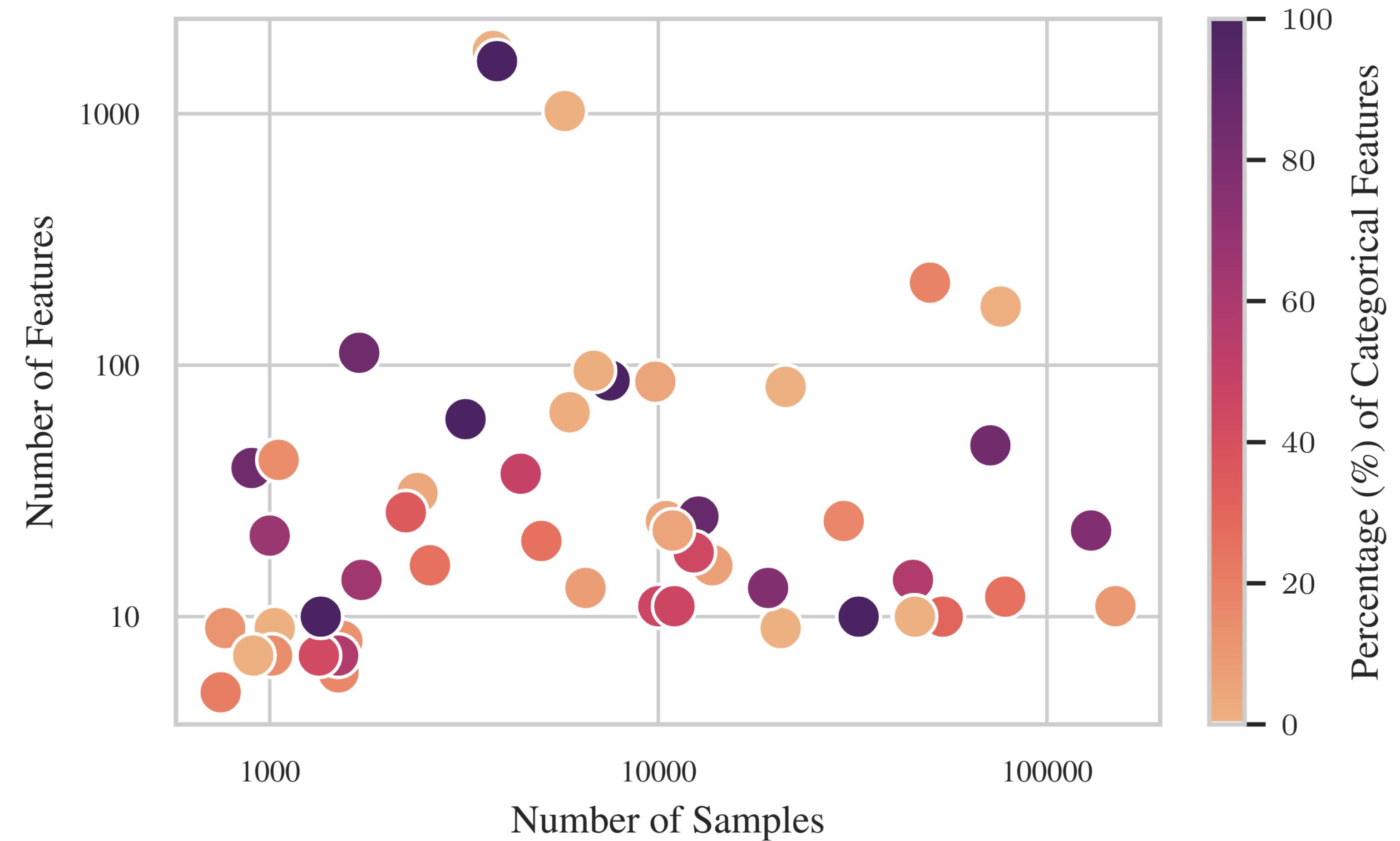
Datasets Overview

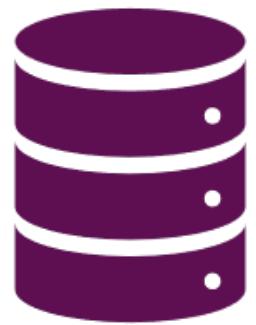
Datasets



Datasets Overview

Datasets





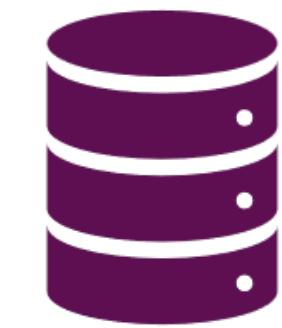
Compared to Prior Benchmarks

Datasets

Benchmark	Manual curation	#datasets remaining
Bischl et al. [28, 29]	✗	9/72
Gorishniy et al. [30]	✓	1/11
Shwartz-Ziv and Armon [31]	✗	1/11
Grinsztajn et al. [32]	✓	12/47
McElfresh et al. [33]	✗	13/196
Fischer et al. [34]	✓	8/35
Gijsbers et al. [35]	✓	15/104
Kohli et al. [7]	✓	17/187
Tschalzev et al. [8]	✓	1/10
Holzmüller et al. [20]	✓	10/118
Ye et al. [36]	✗	39/300
Rubachev et al. [10]	✓	0/8
Salinas and Erickson [37]	✗	19/200
TabArena (Ours)	✓	51/51

Focus

Models



Datasets

TabArena-v0.1

Evaluations

Evaluation Design

Evaluations

1. Repeat experiments per dataset:

- 30 times for data with less than 2500 samples (10-repeated 3-fold cv)
- 9 times for all other data (3-repeated 3-fold cv)

2. Using the Elo rating system

- pairwise model comparison
- 400-point Elo Gap corresponds to a 10 to 1 (91%) win rate

3. Robust metrics appropriate for benchmarking

- Binary: ROC AUC
- Multiclass: Log Loss
- Regression: RMSE

4. Realistic reference pipeline for practitioners

- A pipeline practitioners can easily use
- SOTA AutoML, AutoGluon trained for 4 hours

5. Store and share extensive metadata

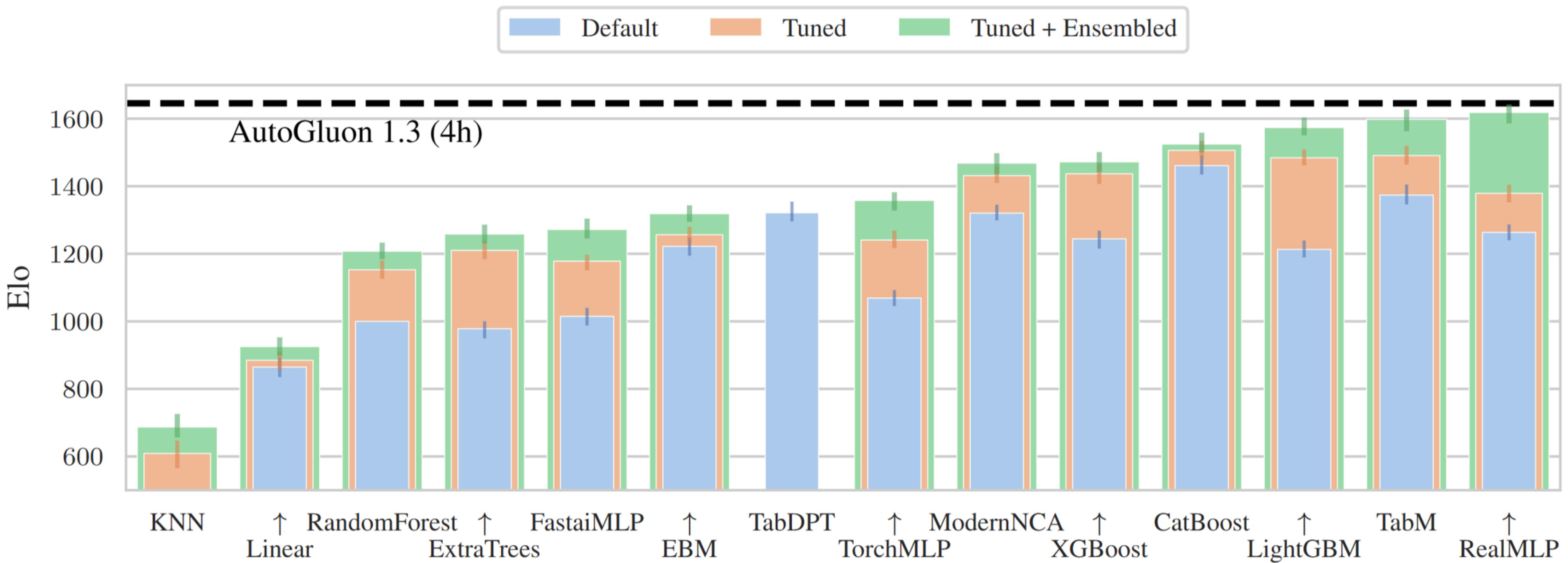
- such as: validation predictions (per-fold), test predictions, training time, inference time, precomputed results on various metrics, hyperparameters – “[TabRepo 2.0](#)”

Evaluation Design

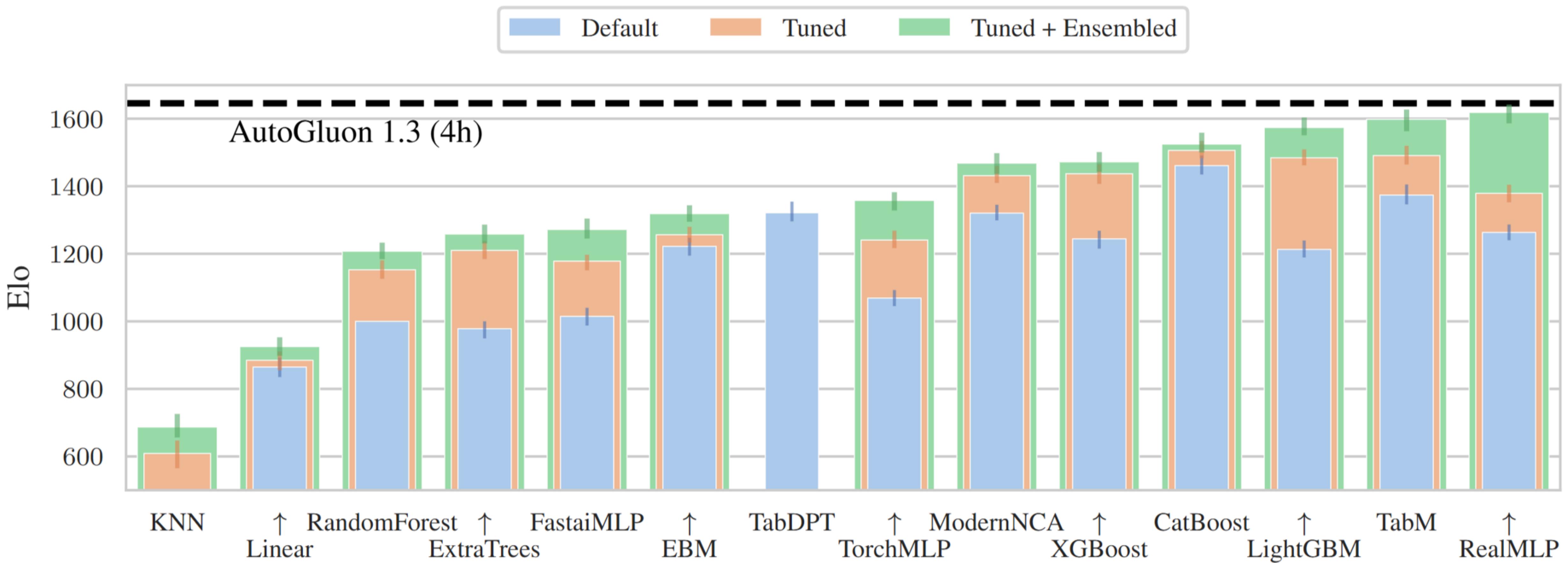
Evaluations

Benchmark	#splits inner	#splits outer	Results available
Bischl et al. [28, 29]	1	10	(✓)
Gorishniy et al. [30]	1	1	✗
Shwartz-Ziv and Armon [31]	1	{1, 3}	✗
Grinsztajn et al. [32]	1	{1, 2, 3, 5}	(✓)
McElfresh et al. [33]	1	10	(✓)
Fischer et al. [34]	{1, 3, 10}	{1, 10, 100}	(✓)
Gijsbers et al. [35]	-	10	(✓)
Kohli et al. [7]	1	1	✗
Tschalzev et al. [8]	10	1	✗
Holzmüller et al. [20]	1	10	✓
Ye et al. [36]	1	1	(✓)
Rubachev et al. [10]	1	1	(✓)
Salinas and Erickson [37]	8	3	✓
TabArena (Ours)	8	{9, 30}	✓

Main Results

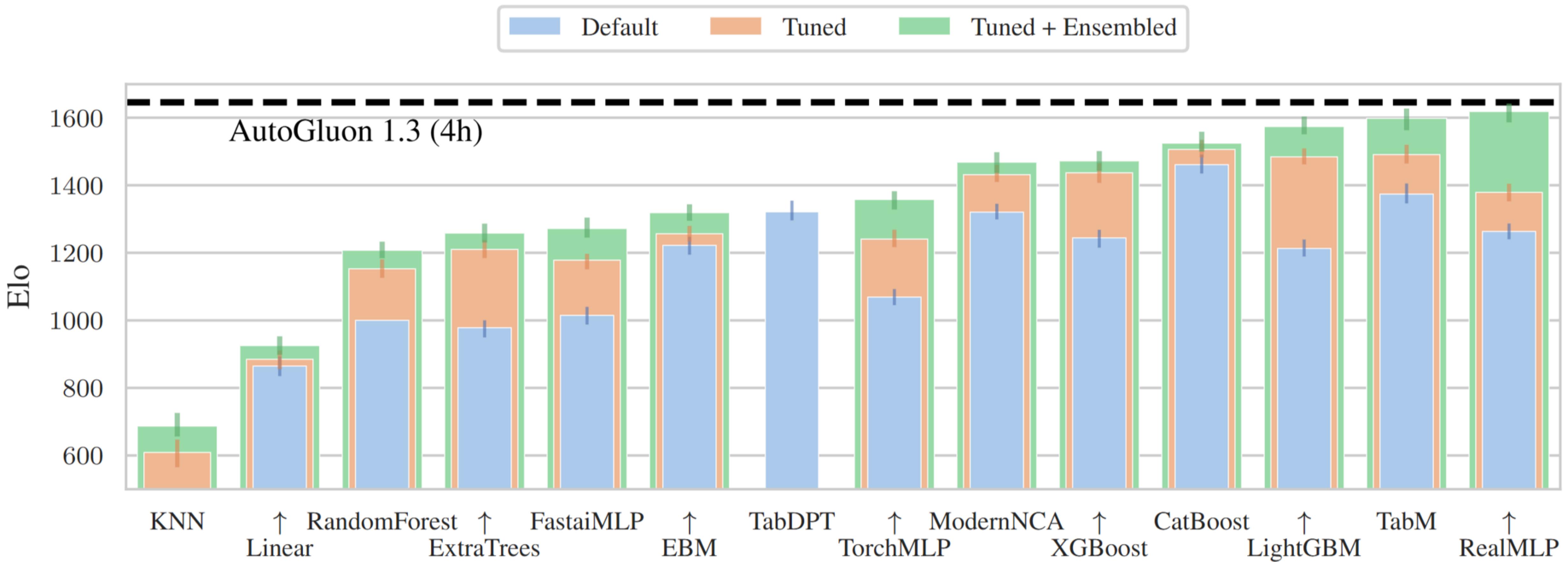


Main Results



CatBoost is best by default and with tuning.

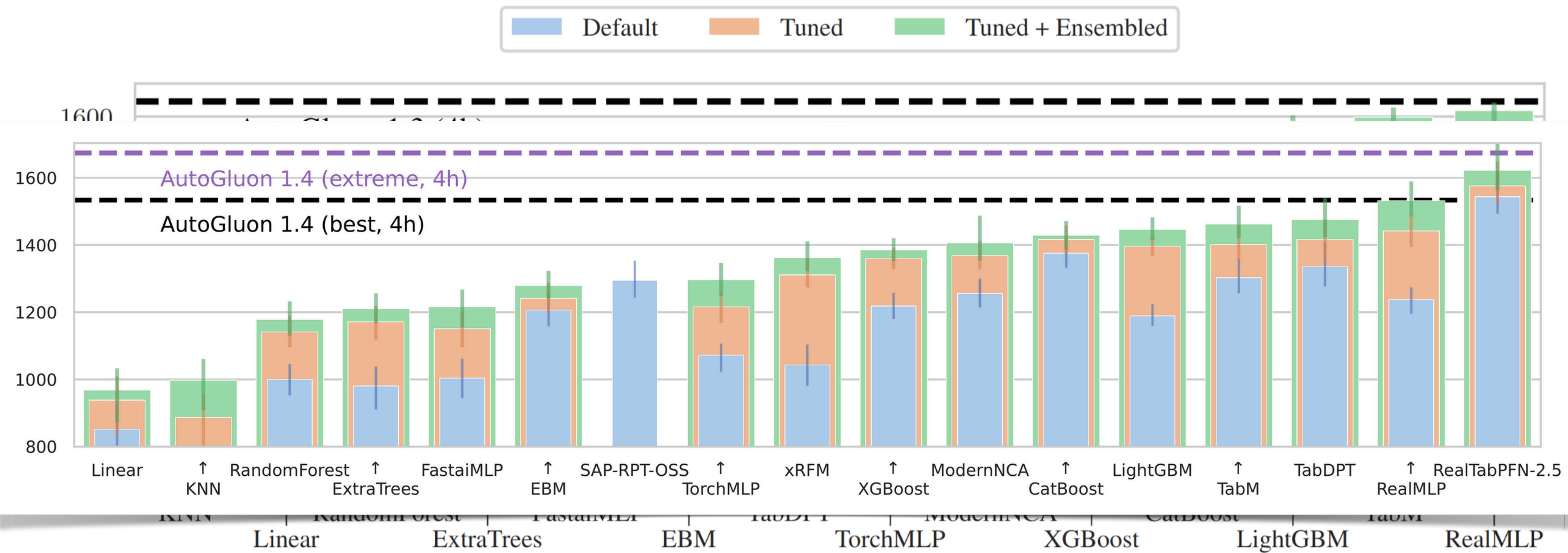
Main Results



CatBoost is best by default and with tuning.

Deep learning models dominate with ensembling.

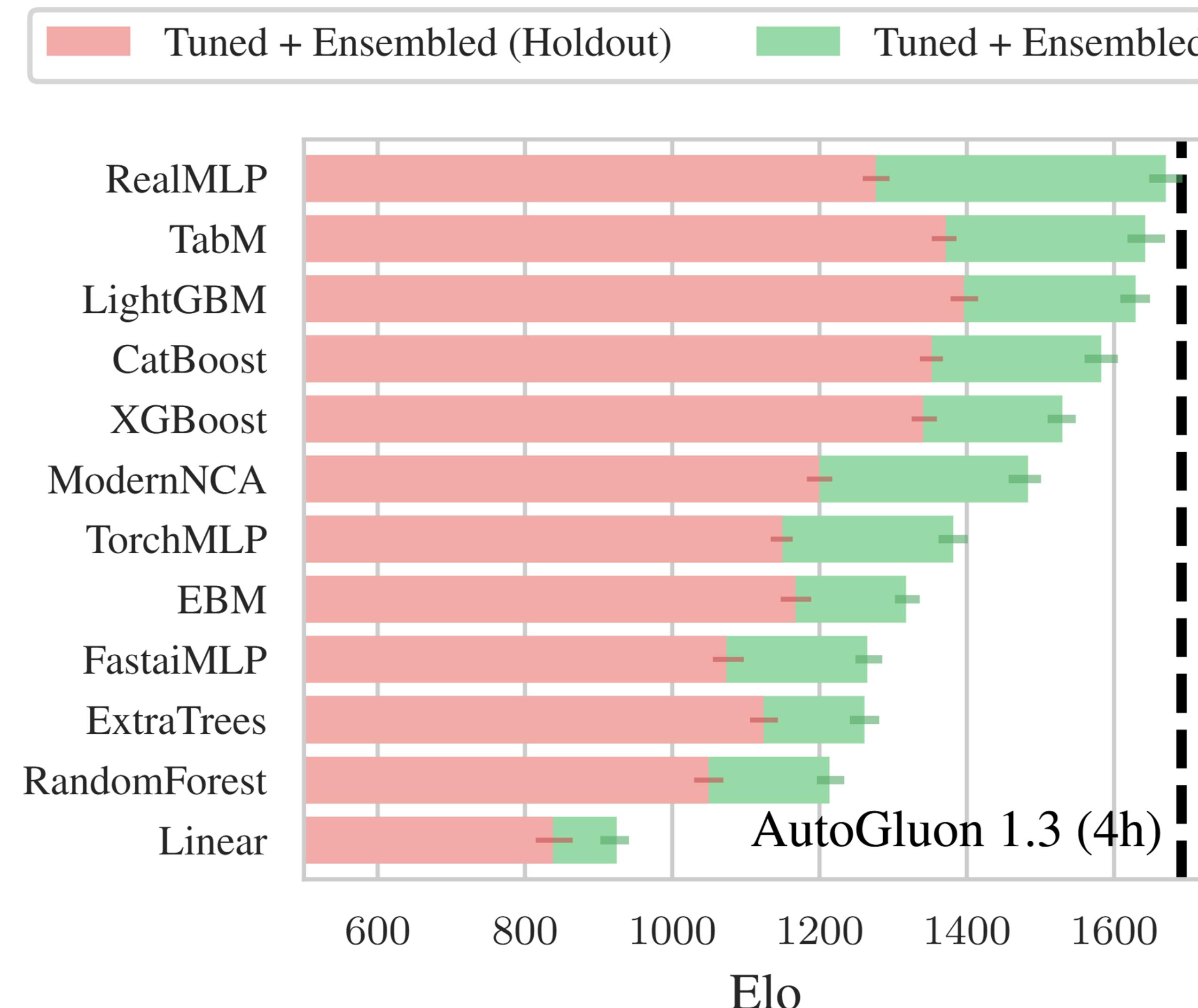
Main Results



CatBoost is best by default and with tuning.

Deep learning models dominate with ensembling.

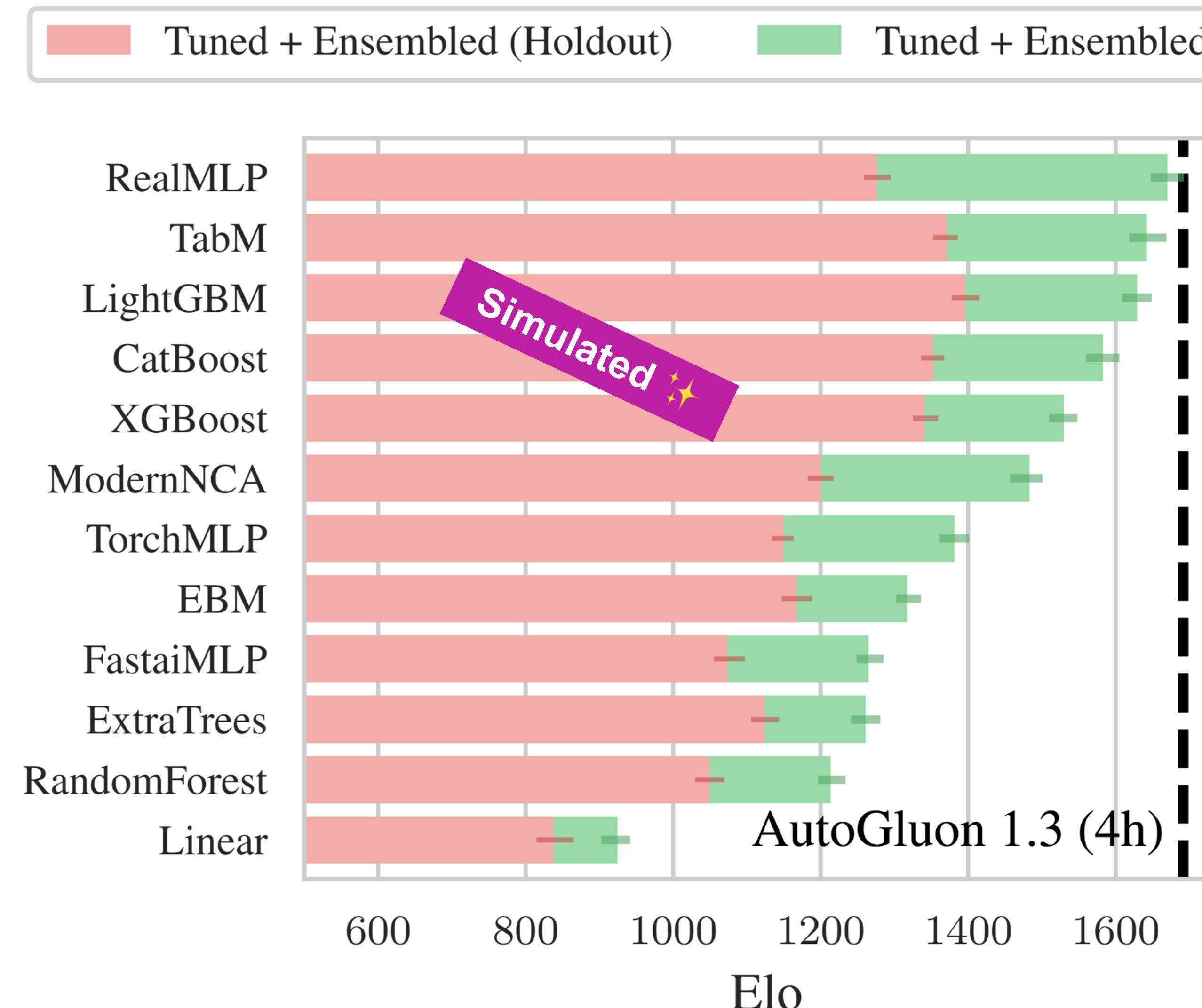
Additional Results: Hold Holdout!



Do not use holdout validation!

- **Worse peak performance** (after HPO + Ensembling)
- **Relative model ranking changes**
- **Unreliable for post-hoc analysis** (e.g., meta-feature analysis)

Additional Results: Hold Holdout!

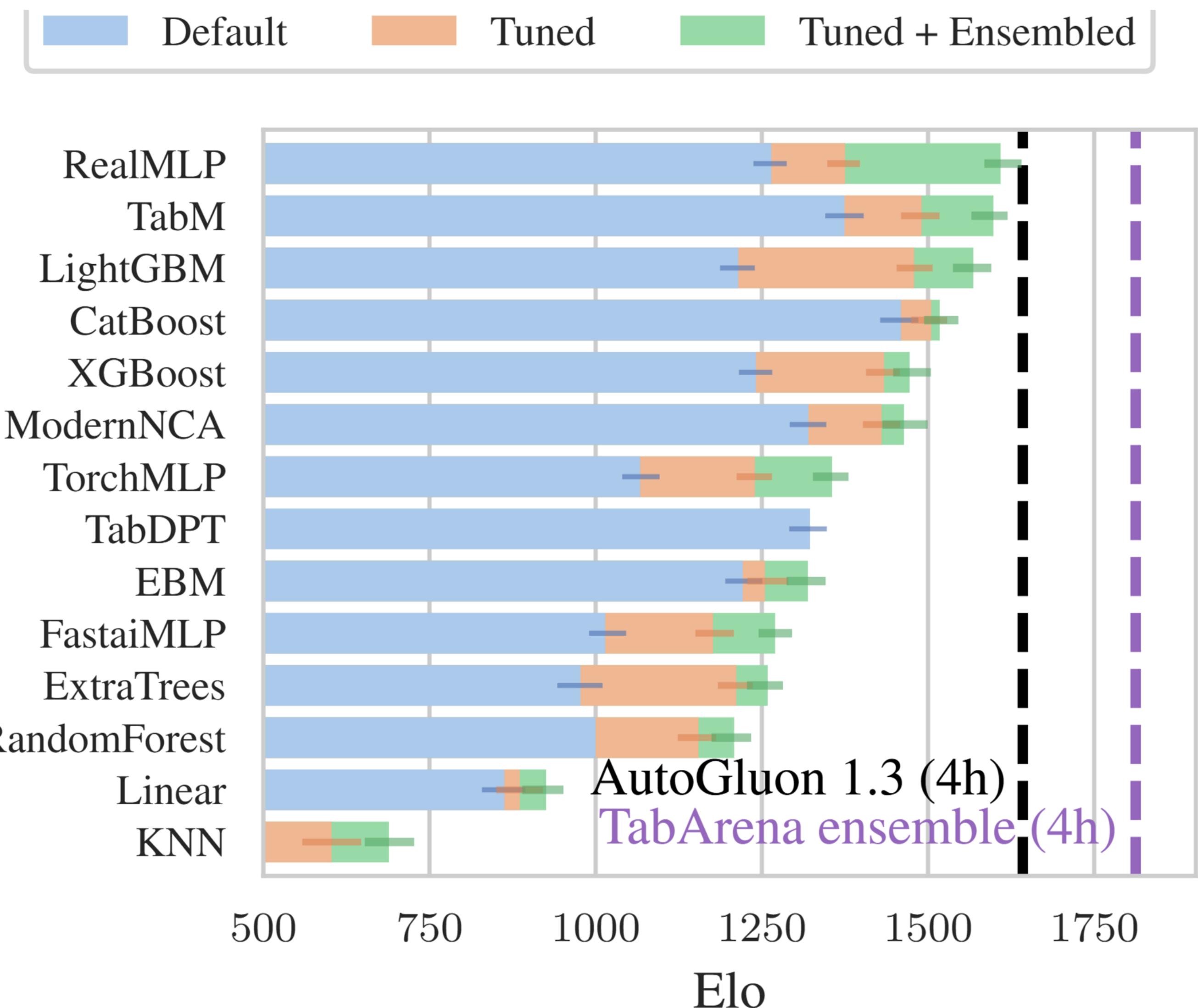


Do not use holdout validation!

- **Worse peak performance** (after HPO + Ensembling)
- **Relative model ranking changes**
- **Unreliable for post-hoc analysis** (e.g., meta-feature analysis)

Additional Results: Ensembling

- Fully **simulated** ✨ **AutoML** system (AutoGluon-like)
- **Significantly better**, even with 4 hours instead of 200 configs
- **The real research goal**; GBDT vs. Deep learning is “just” framing



Hugging Face Leaderboard: <https://tabarena.ai/>

TabArena Leaderboard for Predictive Machine Learning on IID Tabular Data

TabArena is a living benchmark system for predictive machine learning on tabular data. The goal of TabArena and its leaderboard is to asses the peak performance of model-specific pipelines.

 Datasets Models

 Metrics Reference Pipeline

 More Details

 Citation

TabArena Overview

The ranking of all models (with imputation) across various leaderboards.

Type	Model	Main	Classification	Regression	TabICL-data	TabPFN-data	TabPFN/ICL-data	Lite
	RealMLP (tuned + ensemble)	1	2	1	2	2	4	1
	TabM (tuned + ensemble)	2	1	7	1	3	2	3
	LightGBM (tuned + ensemble)	3	3	5	4	5	7	2
	CatBoost (tuned + ensemble)	4	6	4	6	7	10	4
	CatBoost (tuned)	5	7	6	7	10	11	6
	TabM (tuned)	6	5	12	5	9	8	9
	LightGBM (tuned)	7	8	9	10	11	9	8
	XGBoost (tuned + ensemble)	8	11	8	11	12	15	7
	ModernNCA (tuned + ensemble)	9	14	2	14	17	19	5
	CatBoost (default)	10	10	13	9	13	13	10
	TabPFNv2 (tuned + ensemble)	11	9	15	8	1	1	13
	XGBoost (tuned)	12	13	10	13	16	17	11

Living Benchmark: First Steps

ⓘ [WIP][New Model] TabFlex ✓

#171 opened 4 days ago by LennartPurucker (⌚ updated 4 days ago)

[new model](#)

ⓘ update to EBM hyperparameters

#158 opened on May 30 by paulbkoch • 1

ⓘ [WIP][New Model] BETA-TabPFN ✓

#172 opened 4 days ago by LennartPurucker

[new model](#)

ⓘ [WIP][New Model] Mitra Pull Request

#161 opened last month by xiyuanzh (⌚ updated last week)

ⓘ [WIP][New Model] PerpetualBoosting ✓

#170 opened 4 days ago by LennartPurucker (⌚ updated 4 days ago)

[new model](#)

ⓘ [WIP][New Model] Dynamic Programming Decision Trees

#176 opened 3 days ago by  KohlerHECTOR (⌚ updated 3 days ago) 4 tasks

[new model](#)

Using all our models – or with the next version of AutoGluon :)

```
9  from autogluon.core.data import LabelCleaner
10 from autogluon.features.generators import AutoMLPipelineFeatureGenerator
11 from sklearn.datasets import load_breast_cancer
12 from sklearn.metrics import roc_auc_score
13 from sklearn.model_selection import train_test_split
14
15 # Import a TabArena model
16 from tabrepo.benchmark.models.ag.realmpl.realmpl_model import RealMLPModel
17
18 # Get Data
19 X, y = load_breast_cancer(return_X_y=True, as_frame=True)
20 X_train, X_test, y_train, y_test = train_test_split(
21     X, y, test_size=0.5, random_state=42
22 )
23 # Preprocessing
24 feature_generator, label_cleaner = (
25     AutoMLPipelineFeatureGenerator(),
26     LabelCleaner.construct(problem_type="binary", y=y),
27 )
28 X_train, y_train = (
29     feature_generator.fit_transform(X_train),
30     label_cleaner.transform(y_train),
31 )
32 X_test, y_test = feature_generator.transform(X_test), label_cleaner.transform(y_test)
33
34 # Train TabArena Model
35 clf = RealMLPModel()
36 clf.fit(X=X_train, y=y_train)
37
38 # Predict and score
39 prediction_probabilities = clf.predict_proba(X=X_test)
40 print("ROC AUC:", roc_auc_score(y_test, prediction_probabilities))
```

<https://tabarena.ai/code-examples>

Public Dataset Curation: <https://tabarena.ai/dataset-curation>

	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R
1	tid	did	name	Comments	Year	License	Potential issue	Domain	Required split	Relevant task	Refer Orig		Include (Andrej)	Explanation (Andrej)	Include (Lennart)	Explanation (Lennart)	Final Decision	Benchmark
2	2	2	anneal	Not much is known, might be legit; likely from steel production (annealing) as most attributes point to chemical components	1990		Outdated	Tabular	random	Maybe	https://10.2.1.100/datasets/anneal		No	Not in TabRepo, so likely trivial	Maybe	As long as it is not trivial, this seems to be a legit dataset.	Yes	Tabular
3	6	6	letter	Numerical features extracted from images of letters; also includes data augmentation of the images	1991		Image domain	Image	-	No	https://10.2.1.100/datasets/letter		No	Image	No	Image	No	Image
4	11	11	balance-scale	generated data to model a psychological experiment	1976		trivial, artificial, deterministic	Artificial	-	No	https://10.2.1.100/datasets/balance-scale		No	Artificial	No	Artificial	No	Deterministic
5	15	15	breast-w	Nowadays solved differently, domain features extracted from images	1995		Maybe Image domain, outdated	Image, tabu	random	No	https://10.2.1.100/datasets/breast-w		No	Image	No	Image, Outdated	No	Image
6	24	24	mushroom	New knowledge about mushrooms likely is available nowadays; dataset from a book (I guess);	1981		trivial	Tabular	random	No	https://10.2.1.100/datasets/mushroom	Audited	No	Trivial	No	Trivial	No	Scientific Discovery
7	26	26	nursery	Data was derived from a hierarchical decision model, likely trivial as samples cover all possible values; also originally a regression task; no ground truth that the	1989		Outdated, Simulated, ethical issues as reproduces biases	Simulated	-	Maybe	https://10.2.1.100/datasets/nursery		No	Simulated	No	Simulated/Ethical	No	Artificial/Simulated
8	28	28	optdigits	Yet another handwritten digits dataset...	1995		Image domain	Image	-	No	https://10.2.1.100/datasets/optdigits		No	Image	No	Image	No	Image
9	30	30	page-blocks	Grouped data, random splits may be inappropriate; meta-features extract from images rely on the original images	1995		Image domain	Image	Grouped	No	https://10.2.1.100/datasets/page-blocks		No	Image	No	Image	No	Image
10	32	32	pendigits	Yet another handwritten digits dataset..., Grouped data, random splits may be inappropriate, either image or weird	1998		Other domain	Image, Pixe	Grouped	No	https://10.2.1.100/datasets/pendigits		No	Image	No	Image, heavily preprocess	No	Image
11	37	37	diabetes	Rather interpretability than predictive performance task, nowadays done differently	1988		Outdated	Tabular	random	Maybe	https://10.2.1.100/datasets/diabetes	Missing	Yes	Fits our criteria, but TabRepo results for this dataset are pretty random	Yes	No objection	Yes	Tabular
12	41	42	soybean	Some infrequent classes should not be used for prediction, may be outdated, maybe also rather an interpretability task, might require time split as date is available; categorical and nan values already preprocessed	1988		Preprocessing, Historic problems with classes (see e-mails from UCI download)	Tabular	random	Maybe	https://10.2.1.100/datasets/soybean			Needs proper task definition and Conditiona	Unclear	After some preprocessing, I can see this being added	No	Tiny data
13	43	44	spambase	Text formated as table, outdated task / solution, not meta-features but text features, clear indicators of	1998		Text domain	Text	-	No	https://10.2.1.100/datasets/spambase		No	Text	No	Text	No	Text
14	45	46	splice	Domain specific methods might exist; preproccsed DNA data	1991		-	Special tabu	random	Maybe	https://10.2.1.100/datasets/splice		Yes	Special domain and quite old, but no particular reason to exclude.	Yes	No objection	Yes	Tabular
15	49	50	tic-tac-toe	GBDTs & NNs perform perfectly	1991		trivial, artificial, deterministic	Artificial	random	No	https://10.2.1.100/datasets/tic-tac-toe		No	Artificial	No	Deterministic	No	Deterministic
16	58	60	waveform-500	19/40 features are pure noise, data describes waves and was simulated; data from a book	1984		Artificial, Deterministic with noise	Artificial	random	No	https://10.2.1.100/datasets/waveform-500		No	Artificial	No	Deterministic	No	Deterministic
17	219	151	electricity	leak if not temporal split; manually normalized but unclear how; day-wise and week-wise temporal connections	1996-1998		temporal split	tabular	temporal	Maybe	https://10.2.1.100/datasets/electricity		M. Ha	?		Temporal split	No	Temporal Tabular
18	223	155	pokerhand	game data, normalized version, solvable by a look-up table or deterministic algorithm	2002		artificial, deterministic	Artificial	random	No	https://10.2.1.100/datasets/pokerhand		No	Artificial	No	Deterministic	No	Deterministic
																Likely too		

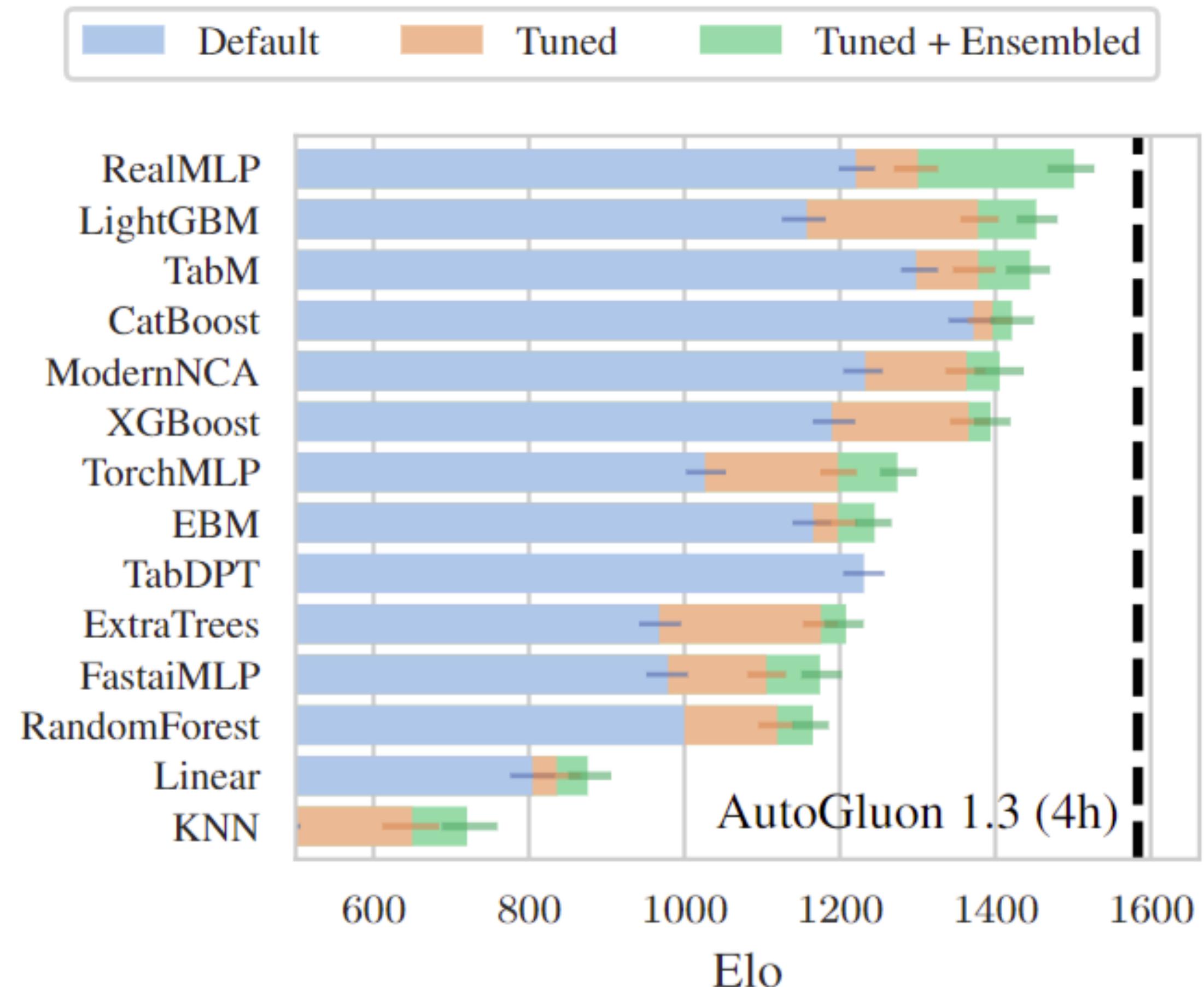
Public Dataset Curation: <https://tabarena.ai/dataset-curation>

	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R
1	tid	did	name	Comments	Year	License	Potential issue	Domain	Required split	Relevant task	Refer Orig		Include (Andrej)	Explanation (Andrej)	Include (Lennart)	Explanation (Lennart)	Final Decision	Benchmark
2	2	2	anneal	Not much is known, might be legit; likely from steel production (annealing) as most attributes point to chemical components	1990		Outdated	Tabular	random	Maybe	https://10.2.1.100/datasets/anneal		No	Not in TabRepo, so likely trivial	Maybe	As long as it is not trivial, this seems to be a legit dataset.	Yes	Tabular
3	6	6	letter	Numerical features extracted from images of letters; also includes data augmentation of the images	1991		Image domain	Image	-	No	https://10.2.1.100/datasets/letter		No	Image	No	Image	No	Image
4	11	11	balance-scale	generated data to model a psychological experiment	1976		trivial, artificial, deterministic	Artificial	-	No	https://10.2.1.100/datasets/balance-scale		No	Artificial	No	Artificial	No	Deterministic
5	15	15	breast-w	Nowadays solved differently, domain features extracted from images	1995		Maybe Image domain, outdated	Image, tabu	random	No	https://10.2.1.100/datasets/breast-w		No	Image	No	Image, Outdated	No	Image
6	24	24	mushroom	New knowledge about mushrooms likely is available nowadays; dataset from a book (I guess);	1981		trivial	Tabular	random	No	https://10.2.1.100/datasets/mushroom	Audited	No	Trivial	No	Trivial	No	Scientific Discovery
7	26	26	nursery	Data was derived from a hierarchical decision model, likely trivial as samples cover all possible values; also originally a regression task; no ground truth that the	1989		Outdated, Simulated, ethical issues as reproduces biases	Simulated	-	Maybe	https://10.2.1.100/datasets/nursery		No	Simulated	No	Simulated/Ethical	No	Artificial/Simulated
8	28	28	optdigits	Yet another handwritten digits dataset...	1995		Image domain	Image	-	No	https://10.2.1.100/datasets/optdigits		No	Image	No	Image	No	Image
9	30	30	page-blocks	Grouped data, random splits may be inappropriate; meta-features extract from images rely on the original images	1995		Image domain	Image	Grouped	No	https://10.2.1.100/datasets/page-blocks		No	Image	No	Image	No	Image
10	32	32	pendigits	Yet another handwritten digits dataset..., Grouped data, random splits may be inappropriate, either image or weird	1998		Other domain	Image, Pixe	Grouped	No	https://10.2.1.100/datasets/pendigits		No	Image	No	Image, heavily preprocess	No	Image
11	37	37	diabetes	Rather interpretability than predictive performance task, nowadays done differently	1988		Outdated	Tabular	random	Maybe	https://10.2.1.100/datasets/diabetes	Missing	Yes	Fits our criteria, but TabRepo results for this dataset are pretty random	Yes	No objection	Yes	Tabular
12	41	42	soybean	Some infrequent classes should not be used for prediction, may be outdated, maybe also rather an interpretability task, might require time split as date is available; categorical and nan values already preprocessed	1988		Preprocessing, Historic problems with classes (see e-mails from UCI download)	Tabular	random	Maybe	https://10.2.1.100/datasets/soybean			Needs proper task definition and Conditiona	Unclear	After some preprocessing, I can see this being added	No	Tiny data
13	43	44	spambase	Text formated as table, outdated task / solution, not meta-features but text features, clear indicators of	1998		Text domain	Text	-	No	https://10.2.1.100/datasets/spambase		No	Text	No	Text	No	Text
14	45	46	splice	Domain specific methods might exist; preprocssed DNA data	1991		-	Special tabu	random	Maybe	https://10.2.1.100/datasets/splice		Yes	Special domain and quite old, but no particular reason to exclude.	Yes	No objection	Yes	Tabular
15	49	50	tic-tac-toe	GBDTs & NNs perform perfectly	1991		trivial, artificial, deterministic	Artificial	random	No	https://10.2.1.100/datasets/tic-tac-toe		No	Artificial	No	Deterministic	No	Deterministic
16	58	60	waveform-500	19/40 features are pure noise, data describes waves and was simulated; data from a book	1984		Artificial, Deterministic with noise	Artificial	random	No	https://10.2.1.100/datasets/waveform-500		No	Artificial	No	Deterministic	No	Deterministic
17	219	151	electricity	leak if not temporal split; manually normalized but unclear how; day-wise and week-wise temporal connections	1996-1998		temporal split	tabular	temporal	Maybe	https://10.2.1.100/datasets/electricity		M. Ha	?		Temporal split	No	Temporal Tabular
18	223	155	pokerhand	game data, normalized version, solvable by a look-up table or deterministic algorithm	2002		artificial, deterministic	Artificial	random	No	https://10.2.1.100/datasets/pokerhand		No	Artificial	No	Deterministic	No	Deterministic
																Likely too		

Public Dataset Curation: <https://tabarena.ai/dataset-curation>

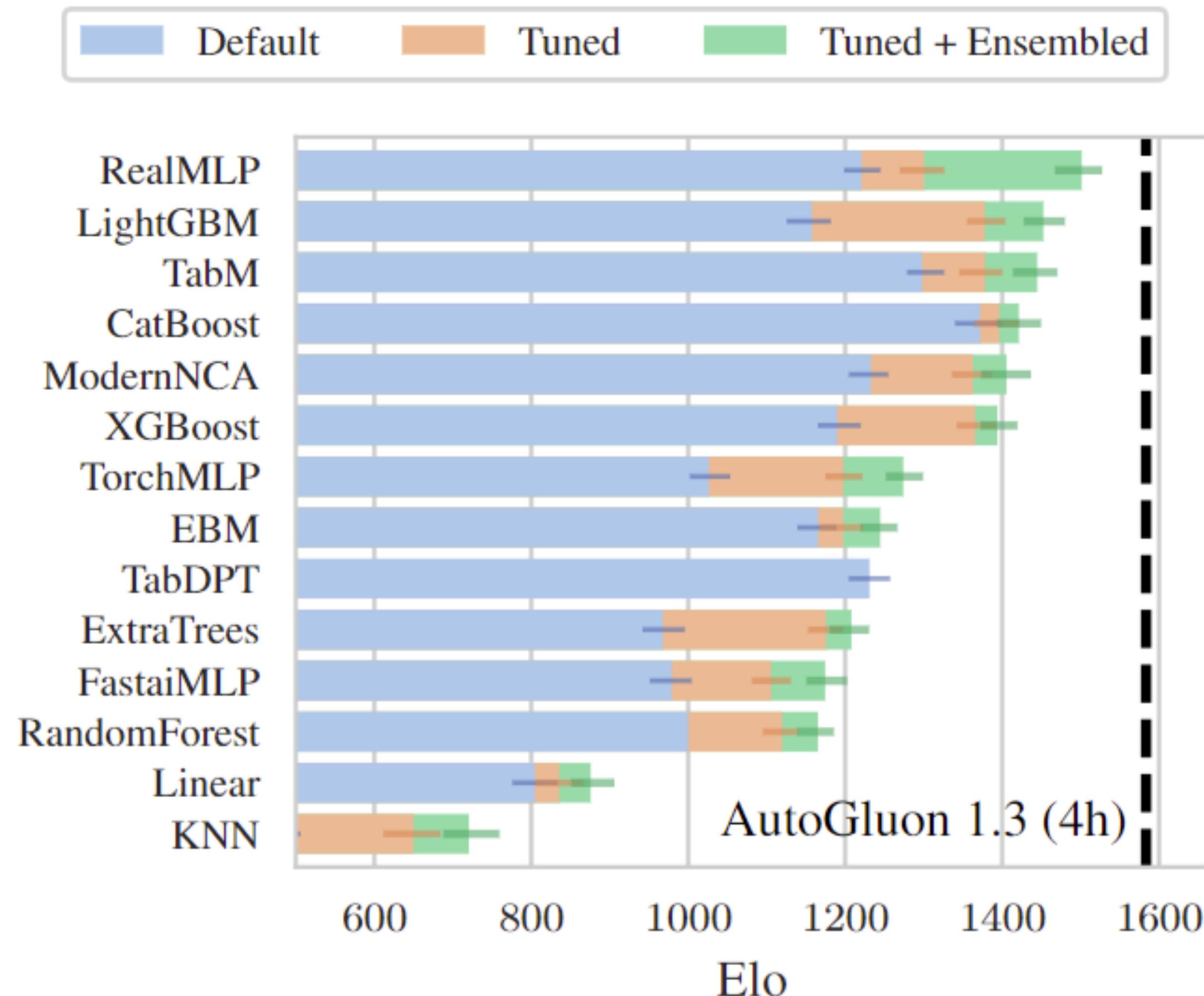
	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R
1	tid	did	name	Comments	Year	License	Potential issue	Domain	Required split	Relevant task	Refer Orig		Include (Andrej)	Explanation (Andrej)	Include (Lennart)	Explanation (Lennart)	Final Decision	Benchmark
2	2	2	anneal	Not much is known, might be legit; likely from steel production (annealing) as most attributes point to chemical components	1990		Outdated	Tabular	random	Maybe	https://10.2.1.100/datasets/anneal		No	Not in TabRepo, so likely trivial	Maybe	As long as it is not trivial, this seems to be a legit dataset.	Yes	Tabular
3	6	6	letter	Numerical features extracted from images of letters; also includes data augmentation of the images	1991		Image domain	Image	-	No	https://10.2.1.100/datasets/letter		No	Image	No	Image	No	Image
4	11	11	balance-scale	generated data to model a psychological experiment	1976		trivial, artificial, deterministic	Artificial	-	No	https://10.2.1.100/datasets/balance-scale		No	Artificial	No	Artificial	No	Deterministic
5	15	15	breast-w	Nowadays solved differently, domain features extracted from images	1995		Maybe Image domain, outdated	Image, tabu	random	No	https://10.2.1.100/datasets/breast-w		No	Image	No	Image, Outdated	No	Image
6	24	24	mushroom	New knowledge about mushrooms likely is available nowadays; dataset from a book (I guess);	1981		trivial	Tabular	random	No	https://10.2.1.100/datasets/mushroom	Audited	No	Trivial	No	Trivial	No	Scientific Discovery
7	26	26	nursery	Data was derived from a hierarchical decision model, likely trivial as samples cover all possible values; also originally a regression task; no ground truth that the	1989		Outdated, Simulated, ethical issues as reproduces biases	Simulated	-	Maybe	https://10.2.1.100/datasets/nursery		No	Simulated	No	Simulated/Ethical	No	Artificial/Simulated
8	28	28	optdigits	Yet another handwritten digits dataset...	1995		Image domain	Image	-	No	https://10.2.1.100/datasets/optdigits		No	Image	No	Image	No	Image
9	30	30	page-blocks	Grouped data, random splits may be inappropriate; meta-features extract from images rely on the original images	1995		Image domain	Image	Grouped	No	https://10.2.1.100/datasets/page-blocks		No	Image	No	Image	No	Image
10	32	32	pendigits	Yet another handwritten digits dataset..., Grouped data, random splits may be inappropriate, either image or weird	1998		Other domain	Image, Pixe	Grouped	No	https://10.2.1.100/datasets/pendigits		No	Image	No	Image, heavily preprocess	No	Image
11	37	37	diabetes	Rather interpretability than predictive performance task, nowadays done differently	1988		Outdated	Tabular	random	Maybe	https://10.2.1.100/datasets/diabetes	Missing	Yes	Fits our criteria, but TabRepo results for this dataset are pretty random	Yes	No objection	Yes	Tabular
12	41	42	soybean	Some infrequent classes should not be used for prediction, may be outdated, maybe also rather an interpretability task, might require time split as date is available; categorical and nan values already preprocessed	1988		Preprocessing, Historic problems with classes (see e-mails from UCI download)	Tabular	random	Maybe	https://10.2.1.100/datasets/soybean			Needs proper task definition and Conditiona	Unclear	After some preprocessing, I can see this being added	No	Tiny data
13	43	44	spambase	Text formated as table, outdated task / solution, not meta-features but text features, clear indicators of	1998		Text domain	Text	-	No	https://10.2.1.100/datasets/spambase		No	Text	No	Text	No	Text
14	45	46	splice	Domain specific methods might exist; preprocssed DNA data	1991		-	Special tabu	random	Maybe	https://10.2.1.100/datasets/splice		Yes	Special domain and quite old, but no particular reason to exclude.	Yes	No objection	Yes	Tabular
15	49	50	tic-tac-toe	GBDTs & NNs perform perfectly	1991		trivial, artificial, deterministic	Artificial	random	No	https://10.2.1.100/datasets/tic-tac-toe		No	Artificial	No	Deterministic	No	Deterministic
16	58	60	waveform-500	19/40 features are pure noise, data describes waves and was simulated; data from a book	1984		Artificial, Deterministic with noise	Artificial	random	No	https://10.2.1.100/datasets/waveform-500		No	Artificial	No	Deterministic	No	Deterministic
17	219	151	electricity	leak if not temporal split; manually normalized but unclear how; day-wise and week-wise temporal connections	1996-1998		temporal split	tabular	temporal	Maybe	https://10.2.1.100/datasets/electricity		M. Ha	?		Temporal split	No	Temporal Tabular
18	223	155	pokerhand	game data, normalized version, solvable by a look-up table or deterministic algorithm	2002		artificial, deterministic	Artificial	random	No	https://10.2.1.100/datasets/pokerhand		No	Artificial	No	Deterministic	No	Deterministic
																Likely too		

Cheaper Evaluation For Papers: TabArena Lite



Only one repeat: 816_x fewer jobs

Cheaper Evaluation For Papers: TabArena Lite



Benchmarking TabFlex
with TabArena Lite
takes about 20 minutes

Takeaways

Benchmarks ❤️

TabArena is a truly representative benchmark for machine learning on small- to medium sized IID tabular data.

SOTA with Ensembling 📈

CatBoost shines. Deep learning with ensembling dominates.
Promising future for foundation models!

Living benchmark baby!

TabArena will be updated and support more (non-IID) data, models, and tasks.

Thank you, any questions?

Leaderboard: <https://tabarena.ai>

Paper: <https://arxiv.org/abs/2506.16791>

Code: <https://tabarena.ai/code>

Nick
Erickson

Lennart
Purucker

Andrey
Tschalzev

David
Holzmüller

Prateek
Mutalik Desai

David
Salinas

Frank
Hutter

Thank you, any questions?

- **EquiTabPFN**
 - Paper: <https://neurips.cc/virtual/2025/poster/118521>
 - Code: <https://github.com/MichaelArbel/EquiTabPFN>
- **TabRepo**
 - Paper: <https://proceedings.mlr.press/v256/salinas24a.html>
 - Code: <https://github.com/autogluon/tabrepo>
- **TabPFN-TS**
 - Paper: <https://arxiv.org/abs/2501.02945>
 - Code: <https://github.com/PriorLabs/tabpfn-time-series>
- **TabArena**
 - Leaderboard: <https://tabarena.ai>
 - Paper: <https://arxiv.org/abs/2506.16791>
 - Code: <https://tabarena.ai/code>