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Why Tabular Data Matters

 Tabular data is the most prevalent format in real-world ML applications
e Healthcare records, financial transactions, customer databases, ...
 Many applications: fraud detection, predicting demand, credit scoring, ...
» |Large portion of ML model deployed in industry

o State of the art dominated by gradient boosted decision trees for many years
» XGBoost, LightGBM, CatBoost became the default choice

* Consistently outperformed neural approaches across benchmarks



Tabular prediction

* |nput: a training data frame, a target column and a training

time budget

* Qutput: a predictor able to give predictions given a test

dataframe

e Metrics:

RMSE (regression), log-prob (classification)

Prediction latency, memory, ...

import pandas as pd
from auvutogluon.tabular import TabularPredictor

df_train = pd.read_csv('train.csv')
df_test = pd.read_csv('train.csv')

predictor = TabularPredictonr( ='class').fit(df_train)

predictions = predictor.predict(df_test)
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https://arxiv.org/pdf/2504.16109
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This talk

Menu du jour

* Entree: introduction to Tabular PFNs
 Menu: EquiTabPFN, dealing with the lack of equivariance of PFNs

* Dessert: benchmarking tabular models



Tabular PFNs




Deep-Learning + Tabular = 9?

 Many attempts to bring deep learning to tabular domains
* Jypically transformer-based methods trained on single datasets
e TabTransformer, FT-Transformer, SAINT and others
 These approaches generally failed to outperform boosted trees
* At best, matched performance of tree-based methods
* Required more computation and careful tuning
* No clear advantage to justify the added complexity
 Tabular Data: Deep Learning is Not All You Need [Shwartz-Ziv 2021]

 Why do tree-based models still outperform deep learning on tabular data? [Grinsztajn 2022]



TabPFN - A Paradigm Shift

 TabPFN marked a significant departure from previous approaches
* First foundational model for tabular data that works
 Key innovation:
* 1. Train on synthetic data
* Solve data scarcity => can fit model on 100s millions of synthetic datasets
« 2. Fit and predict in a single forward pass with In Context Learning (ICL)
* No iterative training loop at inference time
* Provide training data and test points as input = model outputs predictions directly
* Substantially outperforms boosted trees on small/medium datasets, even full blown AutoML systems

* Challenge becomes designing the prior, not the algorithm (the name Priorlabs indicates this)



PFN - How Does It Work?

* [raining happens on synthetic datasets, not real data:

» Sample tabular datasets (X, V,..... X, ..o V....) ~ p(D)

* A transformer trained to predict the posterior predictive distribution directly:

» Estimate p(y,,., | X,

oot Xorains Yerain) With encoder-decoder architecture

 The distribution p(29) is carefully engineered to resemble real-world tabular
data

 Model learns Bayesian inference by observing millions of synthetic learning
problems
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Architecture

 Encode X,
decode X,, .,
contextualized tokens of X,

rain’ Y train

 Model is trained only up to a number of

rain’ Y train

with self-attention,
by attending on the

features and target dimension (with zero-
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e Cannot perform inference or
features/classes not seen!
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The Prior — Structural Causal Models

» The prior p(2)) is the heart of what makes PFNs
WOork

o TabPFN uses Structural Causal Models (SCMs) to
generate synthetic data:

« SCM defines a directed acyclic graph
 Each variable is a function of its parents
 Nodes outputs are random MLPs

e Creates diverse synthetic datasets with realistic
feature interactions

Figure 2: Overview of graphs generating data in our prior. Inputs x are mapped to the output y

(a) ABNN

(b) An SCM

through unobserved nodes z. Plots based on Miiller et al. (2022).
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Figure 3: Each point represents a sample, each sub-plot shows the value of two features for each
sample, color indicates the class label. (a) Two synthetic datasets generated by our causal tabular
data prior. Numeric SCM outputs are mapped to classes as described in Section 4.5. (b) Two datasets

from our validation datasets: Parkinsons (Left) and Wine (Right).
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Results

e TabPFN-v1: decent results on a small
number of datasets against toyish
baselines

 TabPFN-v2: outperforms other methods
on small datasets (up to 10,000 samples)

 TabPFN-v2.5: outperforms SOTA AutoML
system (at time of publication) on medium
sized datasets
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Figure 1: TabPFN-2.5 performance on the standard TabArena-lite benchmark [1], TabPFNv2 classification
subset. TabPFN-2.5 outperforms any other model in a forward pass, and marks a strong leap from
TabPFNv2. When fine-tuned on real data, Real-TabPFN-2.5 shows even stronger performance. The
horizontal dotted line stands for AutoGluon 1.4 extreme mode tuned for 4 hours, an ensemble of models

TabPFN-v2.5



You said PFN?



You said PFN?

 Many followup works!



You said PFN?

 Many followup works!

e Mothernet, Gamformer, TabForest, TabDPT, TabICL,
ContextTab, Mitra, EquiTabPFN, ...



You said PFN?

 Many followup works!

e Mothernet, Gamformer, TabForest, TabDPT, TabICL,
ContextTab, Mitra, EquiTabPFN, ...

» Some applications:



You said PFN?

 Many followup works!

e Mothernet, Gamformer, TabForest, TabDPT, TabICL,
ContextTab, Mitra, EquiTabPFN, ...

» Some applications:

* Time-series (TabPFN-TS Shi-Bin-Hoo 2025)



You said PFN?

 Many followup works!
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» Some applications:

* Time-series (TabPFN-TS Shi-Bin-Hoo 2025)
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EquilabPFN, dealing with the
lack of equivariance of PFNs
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EquiTabPFN

Did you say equivariant?

* |n tabular tasks, the ordering of target components is arbitrary

 Models should give identical predictions under any permutation of target!
Definition

Denote Y* = fy ,(X™) the predictions of a PFN on test features X* given a

training dataset X, Y.
A PFN is target-equivariant if 6(Y™) = fy ;y(X™) for all permutations ¢




Prediction instabilities

* [raining sets with 9 examples,
each own class, features in | 2

 Shows predictions of
o _l(fX,o—(Y)(X*))

 Should be identical for different o!

TabPFN-v2

TabPFN-v2.5
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Equivariance error

Can you just train longer? Or just ensemble more?

No...
Would get to zero with
O(m!) ensembles

6x 1071 L_
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0 153600 307200 460800 | 2 4 8 10
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Equivariance error while training Equivariance error when ensembling



The cost of not being equivariant

Proposition
Under mild assumptions—convex, permutation-invariant loss £ and a target

permutations-invariant data distribution—the optimal solution to the PFN pre-

training objective Is necessarily target equivariant.




Proposed Architecture

» Alternate attention over rows and target dimensions

* Equivariant to target permutations

 Handle any number of target

e Qutput obtained by weighting input labels by similarity
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Conclusion

 Handling target equivariance allows to:

* Obtain stable predictions with respect to target permutation

* Perform inference on any number of classes, not just the ones seen in training
* Future work:

 Handle multivariate regression

» Equivariance to feature symmetry x —» 1 — x

* Single model for regression and classification

* Code available: https://github.com/MichaelArbel/EquiTabPFN/
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. Storing predictions and target labels allows to “2} The dataset combined with portfolio learning

L 4

obtain the performance of any ensemble on the fly! allows to outperform Autogluon!
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Fitting budget (time) Fitting budget (time)

* Portfolio configurations has replaced the
manually configured defaults and improved B with portfolios o AMLD.
significantly AutoGluon

method win-rate  loss reduc.

AG + Portfolio (ours) - 0%

. lr AG 2.8%

3 —*— Portfolio MLJAR 81% 22.5%

% 0.5 l w‘. -l". . ZortthILiIO (en;') lightautoml 83% 11.7%

= e e/t ainpriaty [ S et ] B s St atetaly o Aztzz Iueoanm GAMA 86% 15.5%

c FLAML 87% 16.3%

S e L -l el S | i S ety D S | e el et | R s S S autosklearn 89% 11.8%

' T ' ' ' ' ' T T ' T ' H20AutoML 92% 10.3%

0 5.0 }00 150 | 200 O 50 | .100 150 200 O 50 | 100. 159 200 O 50 100 150 200 CatBoost 947, 18.1%
#configurations per family #training datasets #portfolio configurations #ensemble members

TunedRandomForest 94% 22.9%

RandomPForest 97% 25.0%

Figure 4: Impact on normalized error when varying the (a) number of configurations per family, (b) XGioost 98% 20.9%

LightGBM 98% 23.6%

number of training datasets, (c) portfolio size and (d) number of ensemble members.
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Limitations

e Easy to rerun paper analysis but hard to compare your own method
» |Large collections of datasets (216) but mostly grabbed everything we could
 No good control on quality, duplication, domain

* Only TabPFN-v1 as In Context Learning (ICL) method
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Motivation 1: Unreliable Baselines

How to become SOTA on the highly used benchmark by McElfresh et al. (2023):

Model

Avg. Rank  Avg. norm. logloss

Avg. logloss

XGBoost
CatBoost

LightGBM
ResNet
SAINT
MLP

KNN

5.56
5.84

6.85
8.12
8.77

10.79

15.68

0.1
0.12
0.17
0.22
0.23

0.39

0.71

0.39
0.45

0.45
0.49
0.52
0.96

0.88




Motivation 1: Unreliable Baselines

How to become SOTA on the highly used benchmark by McElfresh et al. (2023):

Model

Avg. Rank  Avg. norm. logloss

Avg. logloss

XGBoost (ours, holdout)
XGBoost

CatBoost

MLP (ours, holdout)
LightGBM

ResNet

SAINT

MLP

KNN

4.13
5.56
5.84
6.09
6.85
8.12
8.77

10.79

15.68

0.06

0.1
0.12
0.15
0.17
0.22
0.23

0.39

0.71

0.36
0.39
0.45

0.4
0.45
0.49
0.52

0.96

0.88




Motivation 1: Unreliable Baselines

How to become SOTA on the highly used benchmark by McElfresh et al. (2023):

Model

Avg. Rank  Avg. norm. logloss

Avg. logloss

XGBoost (ours, holdout) 4.13 0.06 0.36 _

XGBoost

CatBoost

MLP (ours, holdout)
LightGBM

ResNet

SAINT

MLP

KNN

5.56
5.84
6.09
6.85
8.12
8.77

10.79

15.68

0.1
0.12
0.15
0.17
0.22
0.23

0.39

0.71

0.39
0.45

0.4
0.45
0.49
0.52

0.96

0.88

Accepted ICML and
NeurlPS papers (that
claim SOTA)



Motivation 1: Unreliable Baselines

How to become SOTA on the highly used benchmark by McElfresh et al. (2023):

Model Avg. Rank  Avg. norm. logloss  Avg. logloss

XGBoost (ours, SCV) 1.77 0.03 0.34

MLP (ours, SCV) 2.1 0.08 0.34 - Accepted ICML and
XGBoost (ours, holdout) 4.13 0.06 0.36 NeurlPS papers (that
XGBoost 5.56 0.1 0.39 claim SOTA)
CatBoost 5.84 0.12 0.45

MLP (ours, holdout) 6.09 0.15 0.4

LightGBM 6.85 0.17 0.45

ResNet 8.12 0.22 0.49

SAINT 8.77 0.23 0.52

MLP 10.79 0.39 0.96

KNN 15.68 0.71 0.88




Motivation 2: Insufficient Dataset Curation

Faulty data influences the results:

A 6nyc-taxi-green-dec-2016

Performance (R2)

0.18 I : I
Leak Resolved

e LightGBM e MLP e TabM XGBoost



Motivation 2: Insufficient Dataset Curation

Faulty data influences the results:

N

yc-taxi-green-dec-2016

0.6

Performance (R2)

®
1

3 e
4

®
2

4 3
©
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©

0.18

LightGBM

Leak

MLP

Resolved

TabM

XGBoost



Motivation 3: Inappropriate Evaluation Protocols

Splits must be appropriate for the data:

Time-split
Benchmark
Needed Possible Used
Grinsztajn et al. (2022) 22
Tabzilla (McElfresh et al., 2023) 12
WildTab (Kolesnikov, 2023) ] X

TableShift (Gardner et al., 2023) 15
Gorishniy et al. (2024) 7

—_— 00 == O W




Motivation 3: Inappropriate Evaluation Protocols

Splits must be appropriate for the data:
Percentage Change Over MLP

Benchmark from Gorishniy et al. (2024)

2.47%

Tlme-qpht o 3%  13% o 134%
Benchmark 00% e
Needed Possible Used _ E s F ¢ f i 5 Z
c 4 2 F £ F T -
Grinsztajn et al. (2022) 22 5 : = =S
Tabzilla (McElfresh et al., 2023) 12 0
WildTab (Kolesnikov, 2023) ] ] X
TableShift (Gardner et al., 2023) 15 8
Gorishniy et al. (2024) 7 ]

Models Ensembles Training Methods Retrieval-Based Models




Motivation 3: Inappropriate Evaluation Protocols

Splits must be appropriate for the data:

Time-split

Benchmark

Needed Possible Used
Grinsztajn et al. (2022) 22 S
Tabzilla (McElfresh et al., 2023) 12 0
WildTab (Kolesnikov, 2023) | |
TableShift (Gardner et al., 2023) 15 8
Gorishniy et al. (2024) 7 ]

Percentage Change Over MLP

Benchmark from Gorishniy et al. (2024)

2.21% itk
1.68% 1.8%
1.34% 1.3% 1.34%
0.68%
0.0%
~ 7 v 7 y o) 5 > a4
§ S — 5 5 = 2 U =
m A - o a® = Z =
O A = - — = £
S — = a® = o, )
>, . — S
&
— > S
>
TabReD
5 <
- O
1.28% o o 3 o
0.0% >, > >. =
o 2 y p
] & P 5 £
> Q o A ~ -1.05%
8 = = 5 -1.48% o8
-1.98%
> = = = ‘ T
E Q-‘ -.78 C
—
>.
Models Ensembles Training Methods Retrieval-Based Models




Motivation Summary

(Partial) Overview of Tabular Benchmarks

Bischl et al. [28, 29]
Gorishniy et al. [30]
Shwartz-Ziv and Armon [31]
Grinsztajn et al. [32]
MCcElfresh et al. [33]
Fischer et al. [34]
Gijsbers et al. [35]

Kohli et al. [7]

Tschalzev et al. [8]
Holzmiiller et al. [20]

Ye et al. [36]

Rubachev et al. [10]
Salinas and Erickson [37]
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Motivation Summary

(Partial) Overview of Tabular Benchmarks

Bischl et al. [28, 29]
Gorishniy et al. [30]
Shwartz-Ziv and Armon [31]
Grinsztajn et al. [32]
MCcElfresh et al. [33] ‘

I;i.s.cger et ali%] One more b« ci. arl should fix it!
1jsoers et al. [5)] '

Kohli et al. [7] ‘

Tschalzev et al. [8]

Holzmiiller et alm
Ye et al. [36]

Rubachev et al. [10] Benchmarks require
Salinas and Erickson [37] continuous updates!

Erickson, Nick, et al. "TabArena: A Living Benchmark for Machine Learning on
Tabular Data." (2025).
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1. SOTA tree-based,
neural networks,
and foundation
models.

2. Implemented with
authors

3. Good, optimized
search spaces

Models, Hyperparameters, and Tuning

Model Short Name Search Space Type
Random Forests [12] RandomForest Prior Work + Us 4
Extremely Randomized Trees [13] ExtraTrees Prior Work + Us 4
XGBoost [14] XGBoost Prior Work + Us \ 4
LightGBM [15] LightGBM Prior Work + Us \ 4
CatBoost [16] CatBoost Prior Work + Us \ 4
Explainable Boosting Machine [17, 18] EBM Authors 4
FastAI MLP [19] FastaiMLP Authors

Torch MLP [19] TorchMLP Authors

RealMLP [20] RealMLP Authors

TabMLini [9] TabM Authors

ModernNCA [21] ModernNCA Authors

TabPFENV2 [5] TabPFNv2 Authors B
TabICL [22] TabICL - B
TabDPT [23] TabDPT - B
Linear / Logistic Regression Linear TabRepo

K-Nearest Neighbors KNN TabRepo

tree-based (%), neural network (=), pretrained foundation models (‘#), and baseline (- )



Models, Hyperparameters, and Tuning

#splits
Benchmark inner

Bischl et al. [28, 29]
Gorishniy et al. [30]
Shwartz-Ziv and Armon [31]
Grinsztajn et al. [32]
MCcElfresh et al. [33]
Fischer et al. [34] (1, 3, 10}
Gijsbers et al. [35] -
Kohli et al. [7] l
Tschalzev et al. [8] 10
Holzmiiller et al. [20] |
Ye et al. [36] 1
Rubachev et al. [10] 1
Salinas and Erickson [37] 8

3

TabArena (Ours) -

Peak Performance by:
* Proper (inner) cross-validation
to avoid overfitting

pd el ek ek )



Models, Hyperparameters, and Tuning

#splits
Benchmark inner KEnsembling

Bischl et al. [28, 29]
Gorishniy et al. [30]
Shwartz-Ziv and Armon [31]
Grinsztajn et al. [32]
MCcElfresh et al. [33]
Fischer et al. [34] (1, 3, 10}
Gijsbers et al. [35] -
Kohli et al. [7] l
Tschalzev et al. [8] 10
Holzmiiller et al. [20] |
Ye et al. [36] l
Rubachev et al. [10] l
Salinas and Erickson [37] 8

3

TabArena (Ours) -

X Peak Performance by:
* Proper (inner) cross-validation
to avoid overfitting

(,

e

Pl el ek ek )
—_—
N

 Model-wise post-hoc
ensembling (Caruana et al.)

—
ee—

—
e

—

CAEUXCUX XXX NS



Models, Hyperparameters, and Tuning

__Models
#splits HPO Limit
Benchmark inner Ensembling #confs. #hours
Bischl et al. |28, 29] 1 X I - Peak Performance by:
Gorishniy et al. [30] 1 (v) 100 6 * Proper (inner) cross-validation
Shwartz-Ziv and Armon [31] I (V") 1000 - to avoid overfitting
Grinsztajn et al. [32] l X 400 -
McElfresh et al. [33] l X 30 10 .
Fischer et al. [34] (1, 3, 10} X {-, 500} - ’ MOdeI'W'_Se post-hoc
Gijsbers et al. [35] _ (/) _ 4 ensembling (Caruana et al.)
Kohli et al. [7] l X 100 {3,-}
Tschalzev et al. [8] 10 (V) 100 - -  Extensive HPO (200 configs, 1
Holzmiiller et al. [20] l (V) 50 - hour per config)
Ye et al. [36] 1 X 100 -
Rubachev et al. [10] 1 (V") 100 -
Salinas and Erickson [37] 8 v 200 200
TabArena (Ours) 8 v 200 200
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Datasets Curation

Datasets

Deduplication

é()ther domain . . :
: ;Real predictive task Other

- 254 alternative i . _  1ID
1053 version i - 66 1mage : - 49 scientific 149 tinv dat 51
datasets _ 167 same but - 39 forecasting discovery i myl' ata : 52 temporal smal.l- to

names from . - .
13 tabular |- 63 regex + - 12 text - 30 a.rtlﬁlc?ldor 0 License tabular TID
benchmarks sanity check - 5 control simulate e tasks

- 7 similar tasks _ 304! — 121

_ g2 — 427T:

Results of our manual curation: 57 out of 1053




Datasets

Datasets Curation

Deduplication : - :
Other domain :Real predictive task : :
- 254 alternative . : Other 11D
1053 version : - 00 1mage : - 49 scientific 149 tiny dat 51
datasets |_ 167 same but i - 30 forecasting discovery - my. ava : 02 temporal small- to
with unique other names - 13 audio - 44 deterministic - 32 quality medium-
names from o issues . - 16 grouped sized,
13 tabular |~ 03 Te8eX T - 12 text - <0 a?“ﬁflal dor 0 License | tabular IID
benchmarks sanity check - 5 control : simulate . tasks
- 7 similar tasks _ 304§ = 121:
— 427: |
— 562! =420,

T

Unique datasets

Many surprising duplicates (e.g., AutoML competition datasets)
Very similar tasks (e.g., 5 datasets from one paper, same features different targets)




Datasets

Datasets Curation

Deduplication : : :
Other domain ‘Real predictive task :
- 254 alternative i . : Other 11D
1053 version i - 66 1mage : - 49 scientific 149 tiny dat 51
datasets _ 167 same but - 39 forecasting discovery i myl' ata : 52 temporal Smal.l- to
names from o : P ’
13 tabular |~ 03 Te8eX T - 12 text 0 a?“ﬁflf“l dor _ 9 License tabular IID
benchmarks sanity check - 5 control simulate o tasks
- 7 similar tasks _ 304 = 121:
— A27T;

— 5622 T

Tabular Domain Task

Many datasets that treat images as tables (often very outdated)
Often, only the original source described the data




Datasets Curation

Datasets

Deduplication

é()ther domain . . :
: gReal predictive task Other

- 254 alternative i . _  1ID
1053 version i - 66 1mage : - 49 scientific 149 tinv data 51
datasets _ 167 same but : - 39 forecasting discovery i y}' : 52 temporal Smal.l- to
names from o P ’
13 tabular |- 63 regex + - 12 text - 30 a,.rtlﬁl(n?ldor 0 License tabular TID
benchmarks sanity check -5 control simulate o tasks
- 7 similar tasks _ 304! — 121!

_ 562 — 427

Predictive ML Task

» Scientific discovery (why/how questions) vs. predictive task
« Real-world data: not deterministic, not artificial, not simulated




Datasets

Datasets Curation

Deduplication : - :
Other domain ‘Real predictive task :
- 254 alternative . : Other 11D
1053 version . - 66 1mage i - 49 scientific . 51
L : i - 142 tiny data { _ 59 temporal 11
datasets _ 167 same but i - 39 forecasting discovery | p small- to
with unique other names - 13 audio - 44 deterministic - 32 quality medium-
names from o issues : - 16 grouped sized,
13 tabular |~ 03 Te8eX T - 12 text - <0 a?“ﬁflf“l dor 0 License | tabular IID
benchmarks sanity check - 5 control : simulate . tasks
7 similar tasks : _ 304 = 121:
— 427 — |
— 562 = 420
Other

» Many tiny (often old) datasets
« Datasets with preprocessing errors (PCA data leakage), missing source information, and target leakage




Datasets Curation

Datasets

Deduplication : : :
Other domain ‘Real predictive task :
- 254 alternative | : Other . 11D
1053 version : - 00 1mage : - 49 scientific 149 tiny dat 51
datasets |_ 167 same but i - 30 forecasting discovery - my. ava : 02 temporal small- to
with unique other names - 13 audio - 44 deterministic - 32 quality medium-
names from o issues . - 16 grouped sized,
13 tabular |~ 03 Te8eX T - 12 text - <0 a?“ﬁflal dor 0 License | tabular IID
benchmarks sanity check .- 5 control simulate o tasks
7 similar tasks : _ 304 — 121:
— A27; ——
— 562 =420,
lID Tabular Data

* Tasks that require non-random splits
» Temporal-dependent features / grouped data (e.g., algorithm selection)
* Many borderline cases




Datasets Curation

Datasets

Deduplication

é()ther domain . . :
: ;Real predictive task Other

- 254 alternative i . _  1ID
1053 version i - 66 1mage : - 49 scientific 149 tinv dat 51
datasets |_ 167 same but .- 39 forecasting discovery - myl' ata - 52 temporal smal.l- to

names from o - :
13 tabular |~ 03 Te8eX T - 12 text - <0 a?“ﬁflf“l dor 0 License | tabular IID
benchmarks sanity check _ 5 control simulate e tasks

- 7 similar tasks _ 30 4 — 121

_ cp2 — 427

Check for yourself and verify our curation:



https://tabarena.ai/dataset-curation

Datasets Curation

Datasets
Deduplicati : :
S Other domain Real predictive task :
- 254 alternative . b : Other . 1ID
1053 version : - 00 1mage : - 49 scientific 149 tiny dat 51
datasets |_ 167 same but i - 30 forecasting discovery - my. ata - 92 temporal | small- to
with unique other names - 13 audio - 44 deterministic - 32 quality medium-
names from o 1Ssues i - 16 grouped sized,
13 tabular |~ 03 Te8eX T - 12 text - <0 a?“ﬁflal dor 0 License | tabular IID
benchmarks sanity check i- 5 control ' simulate _ 51 tasks
- 7 similar tasks _ a0 4 — 121:
— 427 — |
— 562 = 420

Check for yourself and verify our curat

Smaller is better!
Sometimes at least...

ion:

T —



https://tabarena.ai/dataset-curation
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Number of Datasets
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Datasets

Task

Datasets Overview

License

Binary Regression Multiclass

CCBY 4.0 Public

Other

30

20

10

Source Age

UCI Kaggle OpenML Other 0-5 Years 6-15 Years 16+ Years



Datasets Overview
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Compared to Prior Benchmarks

=
L
_ Datasets

Datasets Manual #datasets

Benchmark curation remaining

Bischl et al. [28, 29] X 972
Gorishniy et al. [30] v 1/11
Shwartz-Ziv and Armon [31] X 1/11
Grinsztajn et al. [32] v 12/47
MCcElfresh et al. [33] X 13/196
Fischer et al. [34] v 8/35
Gijsbers et al. [35] v 15/104
Kohli et al. [7] v 17/187
Tschalzev et al. [8] v 1/10
Holzmiiller et al. [20] v 10/118
Ye et al. [36] X 39/300
Rubachev et al. [10] v 0/8
Salinas and Erickson [37] X 19/200
TabArena (Ours) v 51/51
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Evaluation Design

Evaluations

1. Repeat experiments per dataset:
. 30 times for data with less than 2500 samples (10-repeated 3-fold cv)
. 9 times for all other data (3-repeated 3-fold cv)
2. Using the Elo rating system
o pairwise model comparison
. 400-point Elo Gap corresponds to a 10 to 1 (91%) win rate
3. Robust metrics appropriate for benchmarking
. Binary: ROC AUC
. Multiclass: Log Loss
Regression: RMSE
4. Realistic reference pipeline for practitioners
. A pipeline practitioners can easily use
. SOTA AutoML, AutoGluon trained for 4 hours
5. Store and share extensive metadata
. such as: validation predictions (per-fold), test predictions, training time, inference time,
precomputed results on various metrics, hyperparameters — “TabRepo 2.0"




I Evaluation Design
AP
splits Results

Benchmark inner outer  available
Bischl et al. [28, 29] I 10 (V)
Gorishniy et al. [30] 1 1 X
Shwartz-Ziv and Armon [31] I 1,3} X
Grinsztajn et al. [32] l {1,2,3,5} (V)
McElfresh et al. [33] l 10 (V)
Fischer et al. [34] 1,3, 10} {1, 10, 100} (V")
Gijsbers et al. [35] - 10 (V)
Kohli et al. [7] 1 l X
Tschalzev et al. [8] 10 1 X
Holzmiiller et al. [20] l 10 v
Ye et al. [36] l l (V)
Rubachev et al. [10] 1 l (V)
Salinas and Erickson [37] 8 3 v
TabArena (Ours) 8 {9, 30} v
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Main Results

1600
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- Default

- Tuned

- Tuned + Ensembled

AutoGluon 1.3 (4h)

KNN
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Main Results

1600

1400

1200

1000

800

600

~ Default ~ Tuned - Tuned + Ensembled

AutoGluon 1.3 (4h)

8

KNN

7 RandomForest 1  FastaiMLP 7

TabDPT T ModernNCA 7

TorchMLP XGBoost

CatBoost T TabM

Linear ExtraTrees EBM LightGBM

CatBoost is best by default and with tuning.

T
RealMLP
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Elo

Main Results

1600

1400

1200

1000

800

600

Default Tuned

Tuned + Ensembled

AutoGluon 1.3 (4h)

KNN

T RandomForest 1T  FastaiMLP 7 TabDPT T ModernNCA ¢

[.inear

ExtraTrees EBM TorchMLP XGBoost

CatBoost is best by default and with tuning.

Deep learning models dominate with ensembling.

CatBoost T
LightGBM

TabM

T
RealMLP



Main Results

1400

1200

1000

800

Default Tuned Tuned + Ensembled

T TabDPT

T RealTabPFN-2.5

1NN — — =
AutoGluon 1.4 (extreme, 4h)
PN N N N N N N N N N N D D O D D N N N P NN N DN N NN DN DN DN DN O N N N O N N NN N N N N N N N D O e s . N - —I— —
AutoGluon 1.4 (best, 4h) ' |
l | ! l
' |
: I
| |
Linear T  RandomForest 1 FastaiMLP T SAP-RPT-0SS 1 XRFM T ModernNCA 1T LightGBM
KNN ExtraTrees EBM TorchMLP XGBoost CatBoost

—_-q—lmu“nrvmr—'——rumx

[.inear

A CAULL &

| |
ExtraTrees EBM TorchMLP XGBoost

CatBoost is best by default and with tuning.

Deep learning models dominate with ensembling.

TabM

m

LightGBM

RealMLP

|
RealMLP



Additional Results: Hold Holdout!

Tuned + Ensembled (Holdout)

RealMLP
TabM
LightGBM
CatBoost
XGBoost
ModernNCA
TorchMLP
EBM
FastaiMLP
ExtraTrees
RandomForest

[ inear

|
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Additional Results: Ensembling

SOTA model-agnostic ensembles!

* Fully simulated '+~ AutoML system
(AutoGluon-like)

» Significantly better, even with 4 hours
instead of 200 configs

* The real research goal; GBDT vs. Deep
learning is “just” framing

Default

RealMLP
TabM
LightGBM
CatBoost
XGBoost
ModernNCA
TorchMLP
TabDPT
EBM
FastaiMLP
Extralrees
RandomForest
Linear

KNN

000

750

Tuned

- AutoGluon 1.3 (4h)

Tuned + Ensembled

TabArena ensemble (4 h) I

1000

1250
Elo

1500

1750



Hugging Face Leaderboard:

TabArena Leaderboard for Predictive Machine Learning on IID Tabular Data

TabArena is a living benchmark system for predictive machine learning on tabular data. The goal of TabArena and its leaderboard is to asses the peak performance of model-specific pipelines.

M Datasets | & Models

Metrics M Reference Pipeline
B More Details

B Citation

I TabArena Overview

The ranking of all models (with imputation) across various leaderboards.
Type Model Classification Regression 4 TabICL-data 4 TabPFN-data TabPFN/ICL-data
B o RealMLP (tuned + ensemble) 1 2 4
L Y TabM (tuned + ensemble) 7 3 2
LightGBM (tuned + ensemble) 7
CatBoost (tuned + ensemble) 10
CatBoost (tuned)
TabM (tuned)
LightGBM (tuned)
XGBoost (tuned + ensemble)
ModernNCA (tuned + ensemble)
CatBoost (default)
TabPFNv2 (tuned + ensemble)

XGBoost (tuned)



https://tabarena.ai/

Living Benchmark: First Steps

IS [WIP][New Model] TabFlex v 19 Mitra
#171 opened 4 days ag @Lenna/ tPurucker updated 4 days ago
O opened last month by (@@ xiyuanzh | (%) updated last v

new model

'l [WIP][New ModeI] PerpetualBoosting

! update to EBM hyperparameters
#170 opened 4 days ago by (@ LennartPurucker | (%) updated 4 days ago

v @ paulbkoch | « 1

new model

A-TabPFN v 'l [WIP][New Model] Dynamic Programming Decision Trees

#172 opened 4 days ago by (@ LennartPurucker #176 opened 3 days ago by P KohlerHECTOR | (¥) updated 3 days ago [=], 4 tasks

new model new model




Using all our models — or with the next version of AutoGluon :)

autogluon.core.data import LabelCleaner
autogluon.features.generators import AutoMLPipelineFeatureGenerator
sklearn.datasets import load_breast_cancer

sklearn.metrics import roc_auc_score

sklearn.model selection import train_test split

# Import a TabArena model

from tabrepo.benchmark.models.ag.realmlp.realmlp model import RealMLPModel

# Get Data
X, y = load breast cancer(return_X y=True, as_frame=True)
X _train, X test, y train, y test = train_test split(
X, y, test size=0.5, random_state=42
)
# Preprocessing
feature_generator, label cleaner = (
AutoMLPipelineFeatureGenerator(),
LabelCleaner.construct(problem_type="binary", y=y),
)
X _train, y train = (
feature generator.fit transform(X_train),
label cleaner.transform(y_train),

)

X test, y test = feature_generator.transform(X_ test), label cleaner.transform(y_test)

# Train TabArena Model
clf = RealMLPModel()
clf.fit(X=X_train, y=y train)

# Predict and score

prediction probabilities = clf.predict proba(X=X_test)

print("ROC AUC:", roc_auc_score(y test, prediction probabilities))
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Benchmarking TabFlex
with TabArena Lite
takes about 20 minutes

Only one repeat: 816« fewer jobs




Takeaways

e TabArena is a truly representative benchmark for
Benchmarks . . . .
machine learning on small- to medium sized |ID tabular data.
SOTA CatBoost shines. Deep learning with ensembling dominates.
with Ensembling Promising future for foundation models!

Living TabArena will be updated and
benchmark baby! support more (non-lID) data, models, and tasks.




Thank you, any questions?

Leaderboard: https://tabarena.ai

Paper: https://arxiv.org/abs/2506.16791
Code: https://[tabarena.ai/code

Hasso
Plattner
Institut



https://tabarena.ai/
https://arxiv.org/abs/2506.16791
https://tabarena.ai/code

Thank you, any questions?

 EquiTabPFN  TabPFN-TS
* Paper: https://neurips.cc/virtual/ * Paper: https://arxiv.org/abs/
2025/poster/118521 2501.02945
* Code: https://qgithub.com/ » Code: https://github.com/
MichaelArbel/EquiTabPEN PriorLabs/tabpfn-time-series
 TabRepo  TabArena
 Paper: https://proceedings.mir.press/ * Leaderboard: https://tabarena.al

v256/salinas24a.html |
* Paper: https://arxiv.org/abs/

» Code: https://github.com/autogluon/ 2506.16791
tabrepo

 Code: https://tabarena.ai/code
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